已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
(1);(2) ;(3).
【解析】
試題分析:(1)三次函數(shù)的導(dǎo)數(shù)是二次函數(shù),由,知其對(duì)稱軸,曲線的切線問題,可利用導(dǎo)數(shù)的幾何意義(切點(diǎn)處切線的斜率)列出方程組求解;(2),畫出函數(shù)圖象考察其單調(diào)性,根據(jù)其單調(diào)區(qū)間對(duì)的值分類討論求出其最大值;(3)對(duì)不等式進(jìn)行化簡(jiǎn),得恒成立,即,且,對(duì)任意的成立,然后又轉(zhuǎn)化為求函數(shù)的最值問題,要注意,從而有.
試題解析:(1),∵,
∴函數(shù)的圖象關(guān)于直線對(duì)稱,, 2分
∵曲線在與軸交點(diǎn)處的切線為,∴切點(diǎn)為,
∴,解得,則 5分
(2)∵,
∴,其圖象如圖 7分
當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),,
綜上 10分
(3),,
當(dāng)時(shí),,所以不等式等價(jià)于恒成立,
解得,且, 13分
由,得,,所以,
又,∵ ,∴所求的實(shí)數(shù)的的取值范圍是 16分
考點(diǎn):函數(shù)與導(dǎo)數(shù)、曲線的切線、不等式恒成立問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆江蘇省啟東市高三上學(xué)期第一次檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三下學(xué)期回頭考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求的單調(diào)區(qū)間.
(2)設(shè),,求函數(shù)在上的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省深圳市高三第一次調(diào)研理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為
,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對(duì)一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù),設(shè)曲線在與x軸交點(diǎn)處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),m>0,求函數(shù)在[0,m]上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com