設(shè)函數(shù)f(x)=lg(x2+ax﹣a﹣1),給出下述命題:

①函數(shù)f(x)的值域?yàn)镽;

②函數(shù)f(x)有最小值;

③當(dāng)a=0時(shí),函數(shù)f(x)為偶函數(shù);

④若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍a≥﹣4.

正確的命題是( 。

 

A.

①③

B.

②③

C.

②④

D.

③④

考點(diǎn):

對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn).

專題:

閱讀型.

分析:

由已知中函數(shù)f(x)=lg(x2+ax﹣a﹣1),我們易判斷出其真數(shù)部分的范圍,結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)可判斷①與②的真假,由偶函數(shù)的定義,可判斷③的正誤,再由復(fù)合函數(shù)單調(diào)性的判斷方法及函數(shù)的定義域,可判斷④的對(duì)錯(cuò).進(jìn)而得到結(jié)論.

解答:

解:∵u=x2+ax﹣a﹣1的最小值為﹣(a2+4a+4)≤0

∴①函數(shù)f(x)的值域?yàn)镽為真命題;

但函數(shù)f(x)無(wú)最小值,故②錯(cuò)誤;

當(dāng)a=0時(shí),易得f(﹣x)=f(x),即③函數(shù)f(x)為偶函數(shù)正確;

若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,

解得a>﹣3,故④錯(cuò)誤;

故選A

點(diǎn)評(píng):

本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)、對(duì)數(shù)函數(shù)的定義和值域、偶函數(shù)及復(fù)合函數(shù)的單調(diào)性,是一道函數(shù)的綜合應(yīng)用題,其中④中易忽略真數(shù)部分必須大于0,而錯(cuò)判為真命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
lg|x|,(x<0)
2x-1,(x≥0)
,若f(x0)>0則x0取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-∞,-1)∪(0,+∞)
C、(-1,0)∪(0,1)
D、(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(x2+ax-a-1),給出下述命題:①f(x)有最小值;②當(dāng)a=0時(shí),f(x)的值域?yàn)镽;③若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是a≥-4.則其中正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

24、關(guān)于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)當(dāng)m=1時(shí),解此不等式;
(Ⅱ)設(shè)函數(shù)f(x)=lg(|x+3|-|x-7|),當(dāng)m為何值時(shí),f(x)<m恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(x2+ax-a),若f(x)的值域?yàn)镽,則a的取值范圍是
(-∞,-4]∪[0+∞)
(-∞,-4]∪[0+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有下列命題:
①設(shè)a,b為正實(shí)數(shù),若a2-b2=1,則a-b<1;
②△ABC若acosA=bcosB,則△ABC是等腰三角形;
③數(shù)列{n(n+4)(
2
3
n中的最大項(xiàng)是第4項(xiàng);
④設(shè)函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
則關(guān)于x的方程f2(x)+2f(x)=0有4個(gè)解;
⑤若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中的真命題有
①③
①③
.(寫(xiě)出所有真命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案