【題目】設數(shù)列{an}的前n項和為Sn=2n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設cn= ,求數(shù)列{cn}的前n項和Tn

【答案】
(1)解:當n=1時,a1=S1=2;當n≥2時,an=Sn﹣Sn1=2n2﹣2(n﹣1)2=4n﹣2,

故{an}的通項公式為an=4n﹣2,即{an}是a1=2,公差d=4的等差數(shù)列.

設{bn}的公比為q,則b1qd=b1,d=4,∴q=

故bn=b1qn1=2× ,即{bn}的通項公式為bn=


(2)解:∵cn= = =(2n﹣1)4n1

Tn=c1+c2+…+cn

Tn=1+3×41+5×42+…+(2n﹣1)4n1

4Tn=1×4+3×42+5×43+…+(2n﹣3)4n1+(2n﹣1)4n

兩式相減得,3Tn=﹣1﹣2(41+42+43+…+4n1)+(2n﹣1)4n= [(6n﹣5)4n+5]

∴Tn= [(6n﹣5)4n+5]


【解析】(1)由已知利用遞推公式 可得an , 代入分別可求數(shù)列bn的首項b1 , 公比q,從而可求bn(2)由(1)可得cn=(2n﹣1)4n1 , 利用乘“公比”錯位相減求和.
【考點精析】認真審題,首先需要了解等差數(shù)列的通項公式(及其變式)(通項公式:),還要掌握數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關系)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中, ,且的等比中項為.

1)求數(shù)列的通項公式;

2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對任意恒成立?若存在,求出正整數(shù)的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1.
(1)求f(x)的最小正周期;
(2)若函數(shù)f(x)的定義域為 ,求單調(diào)遞減區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8

(參考公式: = , =

(1)在給出的坐標系中,畫出關于x,y兩個相關變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關于變量x的線性回歸直線方程
(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)設,若對任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求適合下列條件的橢圓的標準方程:

(1)(0,5)(0,-5)為焦點,且橢圓上一點P到兩焦點的距離之和為26;

(2)以橢圓9x25y245的焦點為焦點,且經(jīng)過M(2 )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=sin2x+2cosx( )的最大值與最小值分別為(
A.最大值 ,最小值為﹣
B.最大值為 ,最小值為﹣2
C.最大值為2,最小值為﹣
D.最大值為2,最小值為﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , , 中點.

(Ⅰ)求證: ∥平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在棱上是否存在點,使 ? 若存在,求的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案