【題目】已知函數(shù), .
⑴ 若曲線在點處的切線經(jīng)過點,求實數(shù)的值;
⑵ 若函數(shù)在區(qū)間上單調(diào),求實數(shù)的取值范圍;
⑶ 設,若對, ,使得成立,求整數(shù)的最小值.
【答案】⑴⑵⑶
【解析】試題分析:(1)根據(jù)題意,對函數(shù)求導,由導數(shù)的幾何意義分析可得曲線 在點處的切線方程,代入點,計算可得答案;
(2)由函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系,分函數(shù)在(上單調(diào)增與單調(diào)減兩種情況討論,綜合即可得答案;
(3)由題意得, 分析可得必有 ,對求導,對分類討論即可得答案.
試題解析:
⑴由題意得, ,
, ,
曲線在點處的切線方程為,
代入點,得, .
⑵,
若函數(shù)在區(qū)間上單調(diào)遞增,則在恒成立,
,得;
若函數(shù)在區(qū)間上單調(diào)遞減,則在恒成立,
,得,
綜上,實數(shù)的取值范圍為;
⑶由題意得, ,
,
,即,
由,
當時, ,則不合題意;
當時,由,得或(舍去),
當時, , 單調(diào)遞減,
當時, , 單調(diào)遞增.
,即,
整理得, ,
設, , 單調(diào)遞增,
, 為偶數(shù),
又 , ,
,故整數(shù)的最小值為。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (其中為自然對數(shù)的底數(shù)).
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù) ,看下面四個結(jié)論( ) ①f(x)是奇函數(shù);②當x>2007時, 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正確結(jié)論的個數(shù)為:
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,分E,F(xiàn),G別為PD,AB,CD的中點,PD⊥平面ABCD
(1)證明AC⊥PB
(2)證明:平面PBC∥平面EFG.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過A(3,2)、B(1,6),且圓心在直線y=2x上.
(1)求圓C的方程.
(2)若直線l經(jīng)過點P(﹣1,3)與圓C相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】城市公交車的數(shù)量太多容易造成資源的浪費,太少又難以滿足乘客的需求,為此,某市公交公司在某站臺的60名候車的乘客中隨機抽取15人,將他們的候車時間作為樣本分成5組,如下表所示:
組別 | 一 | 二 | 三 | 四 | 五 |
候車時間(分鐘) | |||||
人數(shù) | 2 | 6 | 4 | 2 | 1 |
(1)估計這15名乘客的平均候車時間;
(2)估計這60 名乘客中候車時間少于10 分鐘的人數(shù);
(3)若從上表第三、四組的6人中選2人作進一步的問卷調(diào)查,求抽到的2人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們稱滿足: ()的數(shù)列為“級夢數(shù)列”.
(1)若是“級夢數(shù)列”且.求: 和的值;
(2)若是“級夢數(shù)列”且滿足, ,求的最小值;
(3)若是“0級夢數(shù)列”且,設數(shù)列的前項和為.證明: ().
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com