【題目】在平面直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線交于,兩點,已知點,且,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上存在兩個不同零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】武漢出現(xiàn)的新型冠狀病毒是一種可以通過飛沫傳播的變異病毒,某藥物研究所為篩查該新型冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,每份樣本取到的可能性均等,有以下兩種檢驗方式:①逐份檢驗,則需要檢驗n次;②混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這k份血液全為陰性,因此這k份血液樣本檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陰性還是陽性都是獨立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份為陽性,若采取逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現(xiàn)取其中份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(i)試運用概率統(tǒng)計知識,若,試求P關(guān)于k的函數(shù)關(guān)系式;
(ii)若,采用混合檢驗方式可以使得這k份血液樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為,點是圓內(nèi)一個定點,點是圓上任意一點,線段的垂直平分線與半徑相交于點.
(1)求動點的軌跡的方程;
(2)給定點,設(shè)直線不經(jīng)過點且與軌跡相交于,兩點,以線段為直徑的圓過點.證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在疫情這一特殊時期,教育行政部門部署了“停課不停學”的行動,全力幫助學生在線學習.復課后進行了摸底考試,某校數(shù)學教師為了調(diào)查高三學生這次摸底考試的數(shù)學成績與在線學習數(shù)學時長之間的相關(guān)關(guān)系,對在校高三學生隨機抽取45名進行調(diào)查.知道其中有25人每天在線學習數(shù)學的時長是不超過1小時的,得到了如下的等高條形圖:
(Ⅰ)是否有的把握認為“高三學生的這次摸底考試數(shù)學成績與其在線學習時長有關(guān)”;
(Ⅱ)將頻率視為概率,從全校高三學生這次數(shù)學成績超過120分的學生中隨機抽取10人,求抽取的10人中每天在線學習時長超過1小時的人數(shù)的數(shù)學期望和方差.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】疫情過后,某商場開業(yè)一周累計生成2萬張購物單,從中隨機抽出100張,對每單消費金額進行統(tǒng)計得到下表:
消費金額(單位:元) | |||||
購物單張數(shù) | 25 | 25 | 30 | ? | ? |
由于工作人員失誤,后兩欄數(shù)據(jù)已無法辨識,但當時記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計出的每單消費額的中位數(shù)與平均數(shù)恰好相等(用頻率估計概率),完成下列問題:
(1)估計該商場開業(yè)一周累計生成的購物單中,單筆消費額超過800元的購物單張數(shù);
(2)為鼓勵顧客消費,拉動內(nèi)需,該商場打算在今年國慶期間進行促銷活動,凡單筆消費超過600元者,可抽獎一次,中一等獎、二等獎、三等獎的顧客可以分別獲得價值元、元、元的獎品.已知中獎率為100%,且一等獎、二等獎、三等獎的中獎率依次構(gòu)成等差數(shù)列,其中一等獎的中獎率為.若今年國慶期間該商場的購物單數(shù)量預計比疫情后開業(yè)一周的購物單數(shù)量增長5%,試預測商場今年國慶期間采辦獎品的開銷.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),對∈[0, π],都有,滿足f(x2)=0的實數(shù)x有且只有3個,給出下述四個結(jié)論:①滿足題目條件的實數(shù)x0有且只有1個;②滿足題目條件的實數(shù)x1有且只有1個;③f(x)在上單調(diào)遞增;④的取值范圍是;其中所有正確結(jié)論的編號是( )
A.①③B.②④C.①②④D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com