【題目】現(xiàn)有4個(gè)人參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1) 求出4個(gè)人中恰有2個(gè)人去 參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
【答案】(1)8:27
(2)1:9
(3) 的分布列是
0 | 2 | 4 | |
【解析】試題分析:依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的人數(shù)的概率為設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件,故;(Ⅰ)這4個(gè)人中恰有2人去參加甲游戲的概率為P(A2);(Ⅱ)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲”為事件B,則B=A3∪A4,利用互斥事件的概率公式可求;(Ⅲ)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,求出相應(yīng)的概率,可得ξ的分布列與數(shù)學(xué)期望.
試題解析:解:依題意,這4個(gè)人中,每個(gè)人去參加甲游戲的概率為,去參加乙游戲的概率為.設(shè)“這4個(gè)人中恰有i人去參加甲游戲”為事件(i=0,1,2,3,4),則
(Ⅰ)這4個(gè)人中恰有2人去參加甲游戲的概率3分
(Ⅱ)設(shè)“這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則,
由于與互斥,故
所以,這4個(gè)人去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為7分
(Ⅲ)ξ的所有可能取值為0,2,4.由于與互斥,與互斥,故
,
。
所以ξ的分布列是
ξ | 0 | 2 | 4 |
P |
隨機(jī)變量ξ的數(shù)學(xué)期望12分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有大小形狀完全相同的5個(gè)小球,其中3個(gè)白球的標(biāo)號(hào)分別為1、 2 、3, 2 個(gè)黑球的標(biāo)號(hào)分別為1、3.
(Ⅰ)從袋中隨機(jī)摸出兩個(gè)球,求摸到的兩球顏色與標(biāo)號(hào)都不相同的概率;
(Ⅱ)從袋中有放回地摸球,摸兩次,每次摸出一個(gè)球,求摸出的兩球的標(biāo)號(hào)之和小于4 的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題13分)已知函數(shù)f(x)=- (a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針?lè)较驖L動(dòng),M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn)。那么,當(dāng)小圓這樣滾過(guò)大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線AB被圓O:x2+y2=1截得的弦長(zhǎng)為
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)B且斜率為k的動(dòng)直線l與橢圓C的另一個(gè)交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)動(dòng)點(diǎn)是圓上任意一點(diǎn),過(guò)作軸的垂線,垂足為,若點(diǎn)在線段上,且滿足.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)直線與交于, 兩點(diǎn),點(diǎn)坐標(biāo)為,若直線, 的斜率之和為定值3,求證:直線必經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,銷售每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元。該企業(yè)在一個(gè)生產(chǎn)周期消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸。問(wèn)該企業(yè)如何安排可獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線上一點(diǎn)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)、,且中點(diǎn)橫坐標(biāo)為2,求的值.
【答案】(1);(2)2.
【解析】試題分析:
(1)由題意設(shè)拋物線方程為,則準(zhǔn)線方程為,解得,即可求解拋物線的方程;
(2)由消去得,根據(jù),解得且,得到,即可求解的值.
試題解析:
(1)由題意設(shè)拋物線方程為(),其準(zhǔn)線方程為,
∵到焦點(diǎn)的距離等于到其準(zhǔn)線的距離,∴,∴,
∴此拋物線的方程為.
(2)由消去得,
∵直線與拋物線相交于不同兩點(diǎn)、,則有
解得且,
由,解得或(舍去).
∴所求的值為2.
【題型】解答題
【結(jié)束】
20
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , , 分別為, 的中點(diǎn),點(diǎn)在線段上.
(1)求證: 平面;
(2)如果三棱錐的體積為,求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的兩個(gè)焦點(diǎn)分別為, ,過(guò)作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn),若為等腰直角三角形,則橢圓的離心率是( )
A. B. C. D.
【答案】C
【解析】試題分析:解:設(shè)點(diǎn)P在x軸上方,坐標(biāo)為(),∵為等腰直角三角形,∴|PF2|=|F1F2|, ,故選D.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握?qǐng)A錐曲線中a,b,c和e的關(guān)系
【題型】單選題
【結(jié)束】
8
【題目】“”是“對(duì)任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com