設(shè)都是銳角,且,,則=( )
A. | B. | C.或 | D.或 |
B
解析試題分析:由α、β都是銳角,且cosα值小于,得到sinα大于0,利用余弦函數(shù)的圖象與性質(zhì)得出α的范圍,再由sin(α+β)的值大于,利用正弦函數(shù)的圖象與性質(zhì)得出α+β為鈍角,可得出cos(α+β)小于0,然后利用同角三角函數(shù)間的基本關(guān)系分別求出sinα和cos(α+β)的值,將所求式子中的角β變形為(α+β)-α,利用兩角和與差的余弦函數(shù)公式化簡后,把各自的值代入即可求出值.解:∵α、β都是銳角,且cosα=
<,∴<α<,又sin(α+β)=∴<α+β<π,∴cos(α+β)=-,sinα=
則cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=- 故選B
考點(diǎn):同角三角函數(shù)間的基本關(guān)系
點(diǎn)評:此題考查了同角三角函數(shù)間的基本關(guān)系,正弦、余弦函數(shù)的圖象與性質(zhì),以及兩角和與差的余弦函數(shù)公式,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
由y=f(x)的圖象向左平移個(gè)單位,再把所得圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍得到y(tǒng)=2sin的圖象,則 f(x)為
A.2sin | B.2sin |
C.2sin | D.2sin |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)f(x)是以2為周期的奇函數(shù),且f(-)=3,若sinα=,則f(4cos2α)= ( )
A.-3 | B.3 | C.- | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
把函數(shù)的圖象向右平移(>0)個(gè)單位,所得的圖象關(guān)于y軸對稱,則的最小值為( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com