【題目】已知函數(shù)f(x)=2ax-x2-3ln x,其中a∈R,為常數(shù).
(1)若f(x)在x∈[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最大值.
【答案】(1)(-∞,3].(2)-3ln 3
【解析】
試題(1)由題意得導(dǎo)函數(shù)在[1,+∞)上非正,利用參變分離將不等式恒成立轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值: 最小值,根據(jù)基本不等式求最小值,即得實(shí)數(shù)a的取值范圍;(2)根據(jù)極值定義可得f′(3)=0,解得a,再利用導(dǎo)數(shù)求函數(shù)最值.
試題解析:解:f′(x)=2a-3x-=.
(1)由題意知f′(x)≤0對(duì)x∈[1,+∞)恒成立,
即≤0,
又x>0,所以-3x2+2ax-3≤0恒成立,
即3≥2a恒成立,6≥2a,
所以a≤3.∴a的取值范圍為(-∞,3].
(2)依題意f′(3)=0,
即=0,
解得a=5,
此時(shí)f′(x)=
=-,
易知x∈[1,3]時(shí)f′(x)≥0,原函數(shù)遞增,x∈[3,5]時(shí),f′(x)≤0,原函數(shù)遞減,
所以最大值為f(3)=-3ln 3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,有下面結(jié)論:
①AC∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是;
④AD1與BD為異面直線.其中正確的結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上是單調(diào)增函數(shù)的是( )
A.
B.y=|x|﹣1
C.y=lgx
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖幾何體中,等邊三角形所在平面垂直于矩形所在平面,又知,//.
(1)若的中點(diǎn)為,在線段上,//平面,求;
(2)若平面與平面所成二面角的余弦值為,求直線與平面所成角的正弦值;
(3)若中點(diǎn)為,,求在平面上的正投影。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函數(shù)f(x)=1﹣ .
(1)若x∈[0, ],求函數(shù)f(x)的值域;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;
(2)若是 成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=cos2x+asinx在區(qū)間( , )是減函數(shù),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求的方程;
(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓于兩點(diǎn),使得,再過(guò)作直線,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過(guò)M作x軸的垂線C于點(diǎn)N.
(1)證明:拋物線C在點(diǎn)N處的切線與AB平行;
(2)是否存在實(shí)數(shù)k使以AB為直徑的圓M經(jīng)過(guò)點(diǎn)N,若存在,求k的值,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com