分析 (1)由題意可得b=$\sqrt{3}$,運(yùn)用直角三角形正弦函數(shù)可得a=2,進(jìn)而得到橢圓方程;
(2)設(shè)P(x1,y1),M(2,y0),求出A,B坐標(biāo),運(yùn)用三點(diǎn)共線(xiàn)的條件:斜率相等,求得直線(xiàn)m的方程,由恒過(guò)定點(diǎn)方法,即可得證.
解答 解:(1)由條件∠OF2B=60°,
可得|BF2|=$\frac{\sqrt{3}}{sin60°}$=2,
則$a=2,b=\sqrt{3}$,
故所求橢圓方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$;
( 2 )證明:設(shè)P(x1,y1),M(2,y0),直線(xiàn)l:x=2,
A(-2,0),由A,P,M共線(xiàn)可得$\frac{{y}_{1}}{{x}_{1}+2}$=$\frac{{y}_{0}}{4}$,
直線(xiàn)BP的斜率為k2=$\frac{{y}_{1}}{{x}_{1}-2}$,直線(xiàn)m的斜率為km=$\frac{2-{x}_{1}}{{y}_{1}}$,
則直線(xiàn)m的方程為y-y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2),
即y=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2)+y0=$\frac{2-{x}_{1}}{{y}_{1}}$(x-2)+$\frac{4{y}_{1}}{{x}_{1}+2}$
=$\frac{2-{x}_{1}}{{y}_{1}}$[(x-2)+$\frac{4{{y}_{1}}^{2}}{4-{{x}_{1}}^{2}}$]
=$\frac{2-{x}_{1}}{{y}_{1}}$[(x-2)+$\frac{12-3{{x}_{1}}^{2}}{4-{{x}_{1}}^{2}}$]=$\frac{2-{x}_{1}}{{y}_{1}}$(x+1),
當(dāng)x=-1時(shí),y=0.
所以直線(xiàn)m過(guò)定點(diǎn)(-1,0).
點(diǎn)評(píng) 本題考查橢圓方程的求法,以及直線(xiàn)恒過(guò)定點(diǎn)的求法,注意運(yùn)用直線(xiàn)方程和三點(diǎn)共線(xiàn)的條件:斜率相等,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com