5.橢圓x2+4y2=16的長軸長和短軸長依次為( 。
A.4,2B.8,4C.4,2$\sqrt{3}$D.8,4$\sqrt{3}$

分析 把橢圓方程化為橢圓的標(biāo)準(zhǔn)方程,求出a,b的值,則答案可求.

解答 解:由橢圓x2+4y2=16,得$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$,
∴a2=16,即a=4,b2=4,即b=2.
∴橢圓x2+4y2=16的長軸長和短軸長依次為:8,4.
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的簡單性質(zhì),考查了橢圓的標(biāo)準(zhǔn)方程,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,且點(diǎn)($\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點(diǎn),過點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn),射線PO交橢圓E于點(diǎn)Q.
(i)求證$\frac{|OQ|}{|OP|}$=2;
(ii)求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列關(guān)系不正確的是(  )
A.I∈NB.$\sqrt{2}$∈QC.{1,2}⊆{1,2,3}D.∅⊆{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax-1-lnx(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)在x=1處取得極值,不等式f(x)≥bx-2對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若(1+x)4=a0+a1x+a2x2+a3x3+a4x4,則a1+a2+a3+a4的值為(  )
A.0B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)數(shù)列{an}使得a1=0,且對(duì)任意的n∈N*,均有|an+1-an|=n,則a3所有可能的取值構(gòu)成的集合為{-3,-1,1,3};a64的最大值為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x+1)=$\frac{{{x^2}+2x}}{x+1}$(x≠-1).
(Ⅰ)求函數(shù)f(x)的解析式,并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)求證:f($\frac{1}{x}$)=f(-x);
(Ⅲ)求證:f(x)在(0,+∞)為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}和{bn},滿足ak+1=ak+bk,k∈N*,若存在正整數(shù)n,使得an=a1成立,則稱數(shù)列{an}為“n階還原數(shù)列”,給出下列條件:
(1)|bk|=1,(2)|bk|=k,(3)|bk|=2k
則可能使數(shù)列{an}為“8階還原數(shù)列”的是( 。
A.(1)B.(1)(2)C.(2)(3)D.(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某商品進(jìn)貨單價(jià)為60元,若銷售價(jià)為90元,可賣出40個(gè),如果銷售價(jià)每漲1元,銷售量就減少1個(gè),為了獲得最大利潤,求此商品的最佳售價(jià)應(yīng)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案