過點(,)、(0,3)的直線與過點(,)、(2,0)的直線的位置關(guān)系為(  )

A.相交但不垂直 

B.垂直

C.平行 

D.重合

[答案] B

[解析] 過點()、(0,3)的直線的斜率為

k1,

過點(,)、(2,0)的直線的斜率為

k2

k1·k2··

··=-1,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知以點P為圓心的圓過點A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點C、D,且|CD|=4
10

(1)求直線CD的方程;
(2)求圓P的方程;
(3)設(shè)點Q在圓P上,試探究使△QAB的面積為8的點Q共有幾個?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形AMBN的周長為8,點M,N的坐標分別為(-
3
 , 0) , (
3
 , 0)

(Ⅰ)求點A,B所在的曲線方程;
(Ⅱ)過點C(-2,0)的直線l與(Ⅰ)中曲線交于點D,與Y軸交于點E,且l∥OA,求證:
|
CD
CE
|
|
OA
|
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是圓O:x2+y2=3上動點,以點P為切點的切線與x軸相交于點Q,直線OP與直線x=1相交于點N,若動點M滿足:
NM
OQ
QM
OQ
=0
,記動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若過點F(2,0)的動直線與曲線C相交于不在坐標軸上的兩點A,B,設(shè)
AF
FB
,問在x軸上是否存在定點E,使得
OF
⊥(
EA
EB
)
?若存在,求出點E的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
6
=0
相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求
OA
OB
的取值范圍;
(3)若B點在于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=ax(a>0),拋物線上一點N(x0, 2
2
) (x0>1)
到拋物線的焦點F的距離是3.
(1)求a的值;
(2)已知動直線l過點P(4,0),交拋物線C于A、B兩點.
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案