【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組,,第二組,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數(shù)據(jù)估計該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);

(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.

【答案】(1),繪圖見解析;(2);(3)

【解析】

(1)由頻率分布直方圖可得:各小矩形的高之和為0.1,運算可得解;

(2)由頻率分布直方圖中平均數(shù)的求法即可得解;

(3)樣本成績屬于第六組的有人,樣本成績屬于第八組的有人,則隨機抽取2名,

基本事件總數(shù)為,他們的分差的絕對值小于10分包含的基本事件個數(shù)為,再利用古典概型概率公式運算即可.

解:(1)由頻率分布直方圖得第七組的頻率為:

完成頻率分布直方圖如下:

(2)用樣本數(shù)據(jù)估計該校的2000名學(xué)生這次考試成績的平均分為:

.

(3)樣本成績屬于第六組的有人,樣本成績屬于第八組的有人,

從樣本成績屬于第六組和第八組的所有學(xué)生中隨機抽取2名,

基本事件總數(shù),

他們的分差的絕對值小于10分包含的基本事件個數(shù)

故他們的分差的絕對值小于10分的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù),.

1)求證:;

2)若對于任意,恒成立,求的取值范圍;

3)若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),的兩個非空子集,如果存在一個函數(shù)滿足:① ;② 對任意,當(dāng)時,恒有,那么稱這兩個集合為“的保序同構(gòu)”,以下集合對不是“的保序同構(gòu)”的是( )

A.B.,

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)滿足不等式

命題q:關(guān)于不等式對任意的恒成立.

1)若命題為真命題,求實數(shù)的取值范圍;

2)若“為假命題,為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四座城市、、、,其中的正東方向,且與相距,的北偏東方向,且與相距;的北偏東方向,且與相距,一架飛機從城市出發(fā)以的速度向城市飛行,飛行了,接到命令改變航向,飛向城市,此時飛機距離城市有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),)的周期為,圖象的一個對稱中心為將函數(shù)圖象上的所有點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將所有圖象向右平移個單位長度后得到函數(shù)的圖象.

1)求函數(shù)的解析式;

2)當(dāng),求實數(shù)與正整數(shù),使恰有2019個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理中是演繹推理的為( )

A. 由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電

B. 猜想數(shù)列的通項公式為

C. 半徑為的圓的面積,則單位圓的面積

D. 由平面直角坐標(biāo)系中圓的方程為,推測空間直角坐標(biāo)系中球的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明:

2)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案