比較(mn0,a0a1)的大。

答案:略
解析:

解:設

mn0,

∴當a1時,,

0a1時,,

∴恒有d0,

故恒有


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋物線y=g(x)經過點O(0,0)、A(m,0)與點P(m+1,m+1),其中m>n>0,b<a,設函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值.
(1)用m,x表示f(x)=0.
(2)比較a,b,m,n的大小(要求按從小到大排列).
(3)若m+n≤2
2
,且過原點存在兩條互相垂直的直線與曲線y=(x)均相切,求y=f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•惠州模擬)已知二次函數(shù)y=g(x)的圖象經過點O(0,0)、A(m,0)與點P(m+1,m+1),設函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值,其中m>n>0,b<a.
(1)求g(x)的二次項系數(shù)k的值;
(2)比較a,b,m,n的大小(要求按從小到大排列);
(3)若m+n≤2,且過原點存在兩條互相垂直的直線與曲線y=f(x)均相切,求y=f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湘潭三模)拋物線y=g(x)過點O(0,0)、A(m,0)與點P(m+1,m+1),其中m>n>0,b<a,設函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值.
(1)用m,x表示y=g(x)并比較a,b,m,n的大。ㄒ蟀磸男〉酱笈帕校
(2)若m+n≤2
2
,且過原點存在兩條互相垂直的直線與曲線y=f(x)均相切,求y=f(x).

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

比較(m>n>0,a>0且a≠1)的大。

查看答案和解析>>

同步練習冊答案