【題目】已知函數(shù)f(x)=(x2﹣3x+3)ex的定義域為[﹣2,t],設f(﹣2)=m,f(t)=n.
(1)試確定t的取值范圍,使得函數(shù)f(x)在[﹣2,t]上為單調函數(shù);
(2)求證:m<n;
【答案】
(1)解:∵f′(x)=(2x﹣3)ex+(x2﹣3x+3)ex=x(x﹣1)ex,
由f′(x)>0可得,x>1或x<0;
由f′(x)><0可得,0<x<1;
∴f(x)在(﹣∞,0),(1,+∞)上遞增,在(0,1)上遞減,
欲f(x)在[﹣2,t]上為單調函數(shù),
則﹣2<t≤0;
∴t的取值范圍為(﹣2,0]
(2)證明:∵f(x)在(﹣∞,0),(1,+∞)上遞增,在(0,1)上遞減,
∴f(x)在x=1處取得極小值e,
又∵f(﹣2)=m= <e=f(1),
∴f(x)在[﹣2,+∞)上的最小值為f(﹣2).
從而當t>﹣2時,f(﹣2)<f(t),即m<n(3)求證:對于任意的t>﹣2,總存在x0∈(﹣2,t),滿足 = (t﹣1)2;又若方程 = (t﹣1)2;在(﹣2,t)上有唯一解,請確定t的取值范圍.
證明:∵ = ﹣x0,
∴ = (t﹣1)2可化為 ﹣x0= (t﹣1)2,
令g(x)=x2﹣x﹣ (t﹣1)2,
則證明方程x2﹣x﹣ (t﹣1)2=0在(﹣2,t)上有解,并討論解的個數(shù).
∵g(﹣2)=6﹣ (t﹣1)2=﹣ (t+2)(t﹣4),
g(t)=t(t﹣1)﹣ (t﹣1)2= (t+2)(t﹣1),
①當t>4或﹣2<t<1時,
g(﹣2)g(t)<0,則方程x2﹣x﹣ (t﹣1)2=0在(﹣2,t)上有且只有一解;
②當1<t<4時,g(﹣2)>0,且g(t)>0,
又∵g(0)=﹣ (t﹣1)2<0,
∴方程x2﹣x﹣ (t﹣1)2=0在(﹣2,t)上有解,且有兩解;
③當t=1時,g(x)=x2﹣x=0,
從而解得,x=0或x=1,
故方程x2﹣x﹣ (t﹣1)2=0在(﹣2,t)上有且只有一解;
④當t=4,g(x)=x2﹣x﹣6=0,
從而解得,x=﹣2或x=3,
故方程x2﹣x﹣ (t﹣1)2=0在(﹣2,t)上有且只有一解;
綜上所述,對于任意的t>﹣2,總存在x0∈(﹣2,t),滿足 = (t﹣1)2;
當方程 = (t﹣1)2在(﹣2,t)上有唯一解時,t的取值范圍為(﹣2,1]∪[4,+∞)
【解析】(1)求導得f′(x)=(2x﹣3)ex+(x2﹣3x+3)ex=x(x﹣1)ex , 從而可得f(x)在(﹣∞,0),(1,+∞)上遞增,在(0,1)上遞減,從而確定t的取值范圍;(2)借助(1)可知,f(x)在x=1處取得極小值e,求出f(﹣2)=m= <e,則f(x)在[﹣2,+∞)上的最小值為f(﹣2),從而得證;(3)化簡 = ﹣x0 , 從而將 = (t﹣1)2化為 ﹣x0= (t﹣1)2 , 令g(x)=x2﹣x﹣ (t﹣1)2 , 則證明方程x2﹣x﹣ (t﹣1)2=0在(﹣2,t)上有解,并討論解的個數(shù);由二次函數(shù)的性質討論即可.
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調性的相關知識,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的不等式(4kx﹣k2﹣12k﹣9)(2x﹣11)>0,其中k∈R;
(1)試求不等式的解集A;
(2)對于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B為有限集,求實數(shù)k的取值范圍,使得集合B中元素個數(shù)最少,并用列舉法表示集合B.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)是奇函數(shù).
(1)求常數(shù)k的值;
(2)若a>1,試判斷函數(shù)f(x)的單調性,并加以證明;
(3)若已知f(1)= ,且函數(shù)g(x)=a2x+a﹣2x﹣2mf(x)在區(qū)間[1,+∞)上的最小值為﹣2,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個內接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設AE=x,綠地面積為y.
(1)寫出y關于x的函數(shù)關系式,并指出這個函數(shù)的定義域;
(2)當AE為何值時,綠地面積y最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,x,y∈R,證明:(a2+b2)(x2+y2)≥(ax+by)2 , 并利用上述結論求(m2+4n2)( + )的最小值(其中m,n∈R且m≠0,n≠0).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直角三角形ABC的頂點坐標A(﹣2,0),直角頂點 ,頂點C在x軸上,點P為線段OA的中點. (Ⅰ)求BC邊所在直線方程;
(Ⅱ)圓M是△ABC的外接圓,求圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線y2=2px(p>0)的焦點為F,其準線與x軸的交點為Q,過Q點的直線l交拋物線于A,B兩點.
(1)若直線l的斜率為 ,求證: ;
(2)設直線FA,F(xiàn)B的斜率分別為k1 , k2 , 求k1+k2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:“直線x+y﹣m=0與圓(x﹣1)2+y2=1相交”;q:“方程mx2﹣2x+1=0有實數(shù)解”.若“p∨q”為真,“¬q”為假,則實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com