已知曲線C

(1)由曲線C上任一點(diǎn)E向軸作垂線,垂足為F,動(dòng)點(diǎn)P滿足,所成的比為,求點(diǎn)P的軌跡. P的軌跡可能是圓嗎?請(qǐng)說明理由;

(2)如果直線l的斜率為,且過點(diǎn)M(0,),直線l交曲線C于A、B兩點(diǎn),又,求曲線C的方程.

解:(1)設(shè),則

       ∵

       ∴ 

        ∴

       代入中,得為P點(diǎn)的軌跡方程.

        當(dāng)時(shí),軌跡是圓。

   (2)由題設(shè)知直線l的方程為,    設(shè)

       聯(lián)立方程組  ,消去得:.

       ∵方程組有兩解  ∴   ∴

      

       而

       ∴    解得

       ∴ 曲線C的方程是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2+
y2
a
=1
,直線l:kx-y-k=0,O為坐標(biāo)原點(diǎn).
(1)討論曲線C所表示的軌跡形狀;
(2)當(dāng)a=-1時(shí),直線l與曲線C相交于兩點(diǎn)M,N,試問在曲線C上是否存在點(diǎn)Q,使得
OM
+
ON
OQ
?若存在,求實(shí)數(shù)λ的取值范圍;若不存在,請(qǐng)說明理由;
(3)若直線l與x軸的交點(diǎn)為P,當(dāng)a>0時(shí),是否存在這樣的以P為直角頂點(diǎn)的內(nèi)接于曲線C的等腰直角三角形?若存在,求出共有幾個(gè)?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:(x-1)2+y2=1,點(diǎn)A(-1,0)及點(diǎn)B(2,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被曲線C攔住,則a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②若對(duì)任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知曲線C:
x2
a2
+y2=1
(a>0),曲線C與x軸相交于A、B兩點(diǎn),直線l過點(diǎn)B且與x軸垂直,點(diǎn)S是直線l上異于點(diǎn)B的任意一點(diǎn),線段SA與曲線C交于點(diǎn)T,線段TB與以線段SB為直徑的圓相交于點(diǎn)M.
(I)若點(diǎn)T與點(diǎn)M重合,求
AT
AS
的值;
(II)若點(diǎn)O、M、S三點(diǎn)共線,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:
y2
m
+x2=1;
(1)由曲線C上任一點(diǎn)E向x軸作垂線,垂足為F,點(diǎn)P在
EF
上,且 
EP
=-
1
3
PF
.問:點(diǎn)P的軌跡可能是圓嗎?請(qǐng)說明理由;
(2)如果直線l的斜率為
2
,且過點(diǎn)M(0,-2),直線l交曲線C于A,B兩點(diǎn),又
MA
MB
=-
9
2
,求曲線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案