已知函數(shù)f(x)=|x|,在①y=數(shù)學(xué)公式,②數(shù)學(xué)公式,③數(shù)學(xué)公式,④數(shù)學(xué)公式與f(x)為同一函數(shù)的函數(shù)的個(gè)數(shù)為________.

1
分析:先判斷兩個(gè)函數(shù)的定義域是否是同一個(gè)集合,再判斷兩個(gè)函數(shù)的解析式是否可以化為一致,即可判定是否是同一函數(shù).
解答:函數(shù)f(x)=|x|的定義域?yàn)镽,值域?yàn)閇0,+∞)
對于①函數(shù)的解析式一致,定義域是同一個(gè)集合,則是同一個(gè)函數(shù)
對于②定義域?yàn)閇0,+∞),不是同一函數(shù)
對于③定義域?yàn)椋?∞,0)∪(0,+∞),不是同一函數(shù)
對于④定義域?yàn)椋?∞,0)∪(0,+∞),不是同一函數(shù)
故答案為:1
點(diǎn)評:判定兩個(gè)函數(shù)是否是同一個(gè)函數(shù)需要兩個(gè)條件:①兩個(gè)函數(shù)的定義域是同一個(gè)集合;②兩個(gè)函數(shù)的解析式可以化為一致.這兩個(gè)條件缺一不可,必須同時(shí)滿足.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案
关 闭