已知圓C1x2y24xy1=0C2x2y22x2y1=0

(1)已知C1C2的公共弦所在直線(xiàn)的方程.

(2)求過(guò)圓C1C2的交點(diǎn),且過(guò)點(diǎn)(1,0)的圓的方程.

 

答案:
解析:

(1)C1C22xy=0公共弦所在直線(xiàn)方程為y=2x  

(2)過(guò)圓C1和C2的交點(diǎn)的圓系:(x2y2+4xy+1)+λ(x2+y2+2x+2y+2)=0 ,由于點(diǎn)(1,0)在圓上,代入圓系方程得λ=

所求圓的方程為x2y22x+4y+1=0.

 


提示:

 

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州二模)已知圓C1:x2+y2=2和圓C2,直線(xiàn)l與C1切于點(diǎn)M(1,1),圓C2的圓心在射線(xiàn)2x-y=0(x≥0)上,且C2經(jīng)過(guò)坐標(biāo)原點(diǎn),如C2被l截得弦長(zhǎng)為4
3

(1)求直線(xiàn)l的方程;
(2)求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1x2+y2=4,圓C2x2+y2=25.點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M是圓C2上的一動(dòng)點(diǎn),線(xiàn)段OM交圓C1于N,過(guò)點(diǎn)M作x軸的垂線(xiàn)交x軸于M0,過(guò)點(diǎn)N作M0M的垂線(xiàn)交M0M于P.
(1)當(dāng)動(dòng)點(diǎn)M在圓C2上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡C的方程.
(2)設(shè)直線(xiàn)l:y=
x
5
+m
與軌跡C交于不同的兩點(diǎn),求實(shí)數(shù)m的取值范圍.
(3)當(dāng)m=
5
5
時(shí),直線(xiàn)l與軌跡C相交于A,B兩點(diǎn),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1x2+y2-2x-4y+4=0
(Ⅰ)若直線(xiàn)l:x+2y-4=0與圓C1相交于A,B兩點(diǎn).求弦AB的長(zhǎng);
(Ⅱ)若圓C2經(jīng)過(guò)E(1,-3),F(xiàn)(0,4),且圓C2與圓C1的公共弦平行于直線(xiàn)2x+y+1=0,求圓C2的方程.
(Ⅲ)求證:不論實(shí)數(shù)λ取何實(shí)數(shù)時(shí),直線(xiàn)l1:2λx-2y+3-λ=0與圓C1恒交于兩點(diǎn),并求出交點(diǎn)弦長(zhǎng)最短時(shí)直線(xiàn)l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+(y+5)2=5,設(shè)圓C2為圓C1關(guān)于直線(xiàn)l對(duì)稱(chēng)的圓,則在x軸上是否存在點(diǎn)P,使得P到兩圓的切線(xiàn)長(zhǎng)之比為
2
?薦存在,求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修2) 2009-2010學(xué)年 第23期 總179期 人教課標(biāo)高一版 題型:044

圓心在同一條直線(xiàn)上,且相鄰的圓彼此外切的一組圓叫做“糖葫蘆圓”.如圖,若在“糖葫蘆圓”中,已知圓C1:x2+(y-1)2=2,圓C3:(x-6)2+(y-7)2=2,求圓C2的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案