橢圓+=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B, F為其右焦點(diǎn), 若AF⊥BF, 設(shè)∠ABF=, 且∈[,], 則該橢圓離心率的取值范圍為            (       )

A.[,1 )          B.[,]       C.[, 1)          D.[,

 

【答案】

B

【解析】

試題分析:設(shè)左焦點(diǎn),連結(jié)所以四邊形是正方形

 

 

考點(diǎn):橢圓離心率

點(diǎn)評(píng):求橢圓離心率的范圍首先要根據(jù)橢圓的幾何性質(zhì)找到關(guān)于的齊次不等式,求解即可得到離心率范圍

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓+=1 (a>b>0)的左焦點(diǎn)到右準(zhǔn)線的距離為,中心到準(zhǔn)線的距離為,則橢圓的方程為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓+=1 (a>b>0)的兩準(zhǔn)線間的距離為,離心率為,則橢圓的方程為(    )

A. +=1                                      B. +=1

C. +=1                                      D. +=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

如圖所示,已知A,B分別為橢圓+=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn),直線lAB,lx軸、y軸分別交于C,D兩點(diǎn),直線CE,DF為橢圓的切線,CEDF的斜率之積kCE·kDF等于(  )

(A)± (B)±

(C)± (D)±

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.

(1)求橢圓的離心率e;

(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),|MN|=|AB|,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆陜西省高二上學(xué)期期中文科數(shù)學(xué)試卷 題型:選擇題

已知雙曲線=1和橢圓+=1(a>0,m>b>0)的離心率互為倒數(shù),那么以a、b、為邊長(zhǎng)的三角形是(    )                      

A.銳角三角形    B.直角三角形    C.鈍角三角形    D.銳角或鈍角三角形

 

查看答案和解析>>

同步練習(xí)冊(cè)答案