如圖,圓的直徑,是延長線上一點,,割線交圓于點,,過點作的垂線,交直線于點,交直線于點.
(1)求證:;
(2)求的值.
(1)證明見解析;(2)24.
解析試題分析:
解題思路:(1)利用四點共圓的性質(zhì)得出兩角線段;(2)利用三角形相似和圓內(nèi)接四邊形的性質(zhì)進(jìn)行求解.
規(guī)律總結(jié):直線與圓的位置關(guān)系,是平面幾何問題的常見題型,?贾R由:圓內(nèi)接四邊形、切割線定理、相似三角形、全等三角形等.
試題解析:解法1:(1)連接,則,
即、、、四點共圓.
∴.
又、、、四點共圓,∴
∴.
∵,
(2)∴、、、四點共圓,
∴,又,
.
解法2:(1)連接,則,又
∴,
∵,∴.
(2)∵,,
∴∽,∴,
即,
又∵,
∴.
考點:1.圓內(nèi)接四邊形;相似三角形.
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知圓的直徑AB=10cm,C是圓周上一點(不同于A、B點),CDAB于D,CD=3cm,
則BD=____________cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于點N,過點N的切線交CA的延長線于P
(1)求證:
(2)若⊙O的半徑為,OA=OM,求MN的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于點N,過點N的切線交CA的延長線于P.
(1)求證:;
(2)若⊙O的半徑為,OA=OM,求MN的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,P是O外一點,PA是切線,A為切點,割線PBC與O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交O于點E。
證明:(1)BE=EC;
(2)ADDE=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓與圓交于兩點,以為切點作兩圓的切線分別交圓和圓于兩點,延長交圓于點,延長交圓于點.已知.
(1)求的長;
(2)求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com