【題目】如圖所示,正方形上連接等腰直角三角形,直角三角形上再連接正方形……如此無(wú)限重復(fù)下去,設(shè)正方形面積為,三角形面積為.當(dāng)?shù)谝粋(gè)正方形的邊長(zhǎng)為2時(shí),則這些正方形和三角形的面積的總和為______.


【答案】10

【解析】

先由題意,求出,,得到正方形的面積構(gòu)成以為首項(xiàng),以為公比的等比數(shù)列,三角形的面積構(gòu)成以為首項(xiàng),以為公比的等比數(shù)列,根據(jù)等比數(shù)列的前項(xiàng)和公式,以及極限的運(yùn)算法則,即可得出結(jié)果.

因?yàn)榈谝粋(gè)正方形的邊長(zhǎng)為2,所以;

因此第一個(gè)三角形的直角邊長(zhǎng)為,其面積為:;

由題意,正方形的面積構(gòu)成以為首項(xiàng),以為公比的等比數(shù)列;

所以其前項(xiàng)和為

三角形的面積構(gòu)成以為首項(xiàng),以為公比的等比數(shù)列;

所以其前項(xiàng)和為,

因此這些正方形和三角形的面積的總和為:

.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)MN,過(guò)點(diǎn)Mx軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).

(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:A為線段BM的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在平面直角坐標(biāo)系中,N為圓C上的一動(dòng)點(diǎn),點(diǎn)D1,0),點(diǎn)MDN的中點(diǎn),點(diǎn)P在線段CN上,且.

)求動(dòng)點(diǎn)P表示的曲線E的方程;

)若曲線Ex軸的交點(diǎn)為,當(dāng)動(dòng)點(diǎn)PA,B不重合時(shí),設(shè)直線的斜率分別為,證明:為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年9~12月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年9~12月同比增長(zhǎng)25%,該市2017年9~12月郵政快遞業(yè)務(wù)量柱形圖及2018年9~12月郵政快遞業(yè)務(wù)量結(jié)構(gòu)扇形圖如圖所示,根據(jù)統(tǒng)計(jì)圖,給出下列結(jié)論:

①2018年9~12月,該市郵政快遞業(yè)務(wù)量完成件數(shù)約1500萬(wàn)件;

②2018年9~12月,該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年9~12月相比有所減少;

③2018年9~12月,該市郵政快遞國(guó)際及港澳臺(tái)業(yè)務(wù)量同比增長(zhǎng)超過(guò)75%,其中正確結(jié)論的個(gè)數(shù)為( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮等比數(shù)列的首項(xiàng)、公比均為.

1)試求無(wú)窮等比子數(shù)列各項(xiàng)的和;

2)是否存在數(shù)列的一個(gè)無(wú)窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出所有滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率是,過(guò)點(diǎn)做斜率為的直線,橢圓與直線交于兩點(diǎn),當(dāng)直線垂直于軸時(shí)

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)作動(dòng)直線交橢圓兩點(diǎn),為平面上一點(diǎn),直線的斜率分別為,且滿足,問(wèn)點(diǎn)是否在某定直線上運(yùn)動(dòng),若存在,求出該直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).

求橢圓的標(biāo)準(zhǔn)方程;

設(shè)為橢圓的中線,點(diǎn),過(guò)點(diǎn)的動(dòng)直線交橢圓于另一點(diǎn),直線上的點(diǎn)滿足,求直線的交點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知從個(gè)球(其中個(gè)白球,1個(gè)黑球)的口袋中取出個(gè)球(,),共有種取法,在這種取法中,可以分成兩類:一類是取出的個(gè)球全部為白球,另一類是取出1個(gè)黑球和個(gè)白球,共有種取法,即有等式成立,試根據(jù)上述思想,化簡(jiǎn)下列式子:________,).

查看答案和解析>>

同步練習(xí)冊(cè)答案