已知動圓P:(x-a)2+(y-b)2=r2(r>0)被y軸所截的弦長為2,被x軸分成兩段弧,且弧長之比等于
13
 , |OP|≤r
(其中P(a,b)為圓心,O為坐標原點).
(1)求a,b所滿足的關系式;
(2)點P在直線x-2y=0上的投影為A,求事件“在圓P內隨機地投入一點,使這一點恰好在△POA內”的概率的最大值.
分析:(1)利用垂徑定理,勾股定理、等腰直角三角形的性質即可得出;
(2)利用點到直線的距離公式、兩點間的距離公式先計算出三角形的面積,利用幾何概率的計算公式得出概率,進而利用導數(shù)求得其最大值.
解答:解:(1)如圖所示,設圓P被y軸所截的弦為EF,與x軸相較于C,D兩點,
過點P作PM⊥EF,垂足為M,連接PE,由垂徑定理可得|EM|=1,在Rt△EMP中,r2=1+a2.①
∵被x軸分成兩段弧,且弧長之比等于
1
3
,設
CD
為劣弧,∴∠CPD=90°,
過點P作PN⊥x軸,垂足無N,連接PD,PC,則Rt△PND為等腰直角三角形,∴r2=2b2.②
聯(lián)立①②消去r可得:2b2=1+a2,即為a,b所滿足的關系式.
(2)點P到直線x-2y=0的距離|PA|=
|a-2b|
5
=d,
∵PA⊥OA,∴|OA|=
r2-|PA|2
=
r2-d2
,
∴S△OAP=
1
2
|OA| |PA|
=
1
2
d
r2-d2

∴事件“在圓P內隨機地投入一點,使這一點恰好在△POA內”的概率P=
S△OAP
S圓P
=
1
2
d
r2-d2
πr2
1
×
d2+(r2-d2)
2r2

=
1
,當且僅當d2=r2-d2,即
r2=1+a2
r2=2b2
r2=2(
|a-2b|
5
)2
,解得
a2=
9-4
5
4
5
-7
b2=
1
4
5
-7

∴P的最大值為
1
點評:熟練掌握垂徑定理,勾股定理、等腰直角三角形的性質、點到直線的距離公式、兩點間的距離公式、幾何概率的計算公式、利用導數(shù)研究函數(shù)的單調性是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動圓P過定點A(-3,0),并且在定圓B:(x-3)2+y2=64的內部與其相內切,求動圓圓心P的軌跡方程為( 。
A、
x2
7
+
y2
16
=1
B、
x2
16
+
y2
7
=1
C、
x2
7
-
y2
16
=1
D、
x2
16
-
y2
7
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓P過點N(
5
,0)
并且與圓M:(x+
5
)2+y2=16
相外切,動圓圓心P的軌跡為W,軌跡W與x軸的交點為D.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設直線l過點(m,0)(m>2)且與軌跡W有兩個不同的交點A,B,求直線l斜率k的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若
DA
DB
=0
,證明直線l過定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓P與定圓C:(x-2)2+y2=1相外切,又與定直線l:x=-1相切,那么動圓的圓心P的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省武漢市部分重點中學高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知動圓P:(x-a)2+(y-b)2=r2(r>0)被y軸所截的弦長為2,被x軸分成兩段弧,且弧長之比等于(其中P(a,b)為圓心,O為坐標原點).
(1)求a,b所滿足的關系式;
(2)點P在直線x-2y=0上的投影為A,求事件“在圓P內隨機地投入一點,使這一點恰好在△POA內”的概率的最大值.

查看答案和解析>>

同步練習冊答案