【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大;
(2)若a=2 ,求△ABC面積的最大值.

【答案】
(1)解:∵向量 =(cosA,cosB), =(a,2c﹣b), ,

∴(2c﹣b)cosA=acosB,

由正弦定理得:(2sinC﹣sinB)cosA=sinAcosB,

整理得2sinCcosA=sin(A+B)=sinC;

在△ABC中,sinC≠0,∴cosA=

∵A∈(0,π),故 ;


(2)解:由余弦定理,cosA= =

又a=2 ,∴b2+c2﹣20=bc≥2bc﹣20,

得bc≤20,當(dāng)且僅當(dāng)b=c時(shí)取到“=”;

∴SABC= bcsinA≤5 ,

所以三角形面積的最大值為5


【解析】(1)根據(jù)平面向量的共線定理,利用正弦定理,即可求出A的值;(2)根據(jù)余弦定理,利用基本不等式,即可求出三角形面積的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|x+1|.
(1)求函數(shù)f(x)的值域M;
(2)若a∈M,試比較|a﹣1|+|a+1|, , 的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=kx3+3(k﹣1)x2﹣k2+1在x=0,x=4處取得極值.
(1)求常數(shù)k的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(3)設(shè)g(x)=f(x)+c,且x∈[﹣1,2],g(x)≥2c+1恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+bln(x+1)在[0,+∞)上單調(diào)遞減,則b的取值范圍(
A.[0,+∞)
B.[﹣ ,+∞)
C.(﹣∞,0]
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時(shí),f(x)=( 1x , 則
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個(gè)對(duì)稱軸;
⑤當(dāng)x∈(3,4)時(shí),f(x)=( x3
其中所有正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)若函數(shù)f(x)在區(qū)間(a,a+ )(a>0)上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1:y=x2與曲線C2:y=-(x-2)2,直線lC1C2都相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過兩點(diǎn)A(1,0),B(2,1),且圓心在直線x﹣y=0上的圓的標(biāo)準(zhǔn)方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線(a>b>0)的左、右焦點(diǎn)分別是F1,F2,過F2的直線交雙曲線的右支于P,Q兩點(diǎn),若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為 ( )

A. B. C. 2 D.

查看答案和解析>>

同步練習(xí)冊答案