精英家教網 > 高中數學 > 題目詳情

【題目】已知函數定義在上,且可以表示為一個偶函數與一個奇函數之和,設

1)求出的解析式;

2)若對于任意恒成立,求的取值范圍;

【答案】(1)p(t)t22mtm2m1.(2)m≥-

【解析】試題分析:1根據的奇偶性列關于的方程組,求出的解析式,從而求出的解析式即可;2問題轉化為對于恒成立,,根據函數的單調性求出的范圍即可.

試題解析(1)假設f(x)g(x)h(x), f(x)g(x)h(x)

①②解得g(x)2x,

h(x)2x.

2xt,則tR,平方得t2(2x)222x2

g(2x)22xt22,p(t)t22mtm2m1.

(2)h(x)對于x[1,2]單調遞增,t

P(t)t22mtm2m1m2m1對于t[,]恒成立,

m對于t[]恒成立,

φ(t)=-φ(t)t[,]上單調遞減,

φ(t)maxφ()=-,mm的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了適當疏導電價矛盾,保障電力供應,支持可再生能源發(fā)展,促進節(jié)能減排,安徽省于2012年推出了省內居民階梯電價的計算標準:以一個年度為計費周期、月度滾動使用,第一階梯電量:年用電量2160度以下(含2160度),執(zhí)行第一檔電價0.5653元/度;第二階梯電量:年用電量2161至4200度(含4200度),執(zhí)行第二檔電價0.6153元/度;第三階梯電量:年用電量4200度以上,執(zhí)行第三檔電價0.8653元/度.

某市的電力部門從本市的用電戶中隨機抽取10戶,統(tǒng)計其同一年度的用電情況,列表如下表:

用戶編號

1

2

3

4

5

6

7

8

9

10

年用電量(度)

1000

1260

1400

1824

2180

2423

2815

3325

4411

4600

(Ⅰ)試計算表中編號為10的用電戶本年度應交電費多少元?

(Ⅱ)現(xiàn)要在這10戶家庭中任意選取4戶,對其用電情況作進一步分析,求取到第二階梯電量的戶數的分布列與期望;

(Ⅲ)以表中抽到的10戶作為樣本估計全市的居民用電情況,現(xiàn)從全市居民用電戶中隨機地抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數).以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若交于兩點,點的極坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據統(tǒng)計2018年春節(jié)期間微信紅包收發(fā)總量達到460億個。收發(fā)紅包成了生活的調味劑。某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下,對它們搶到的紅包個數進行統(tǒng)計,得到如下數據:

型號

手機品牌

甲品牌(個)

4

3

8

6

12

乙品牌(個)

5

7

9

4

3

Ⅰ)如果搶到紅包個數超過5個的手機型號為優(yōu),否則非優(yōu),請據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?

Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出2種型號的手機進行大規(guī)模宣傳銷售.求型號Ⅰ或型號Ⅱ被選中的概率.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校高三年級有學生750人,其中男生450人,女生300人,為了研究學生的數學成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數學分數,然后按性別分別分為男、女兩組,再將兩組學生的分數分成5組,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)從樣本中分數小于110分的學生中隨機抽取兩人,求兩人性別相同的概率;

(2)若規(guī)定分數不小于130分的學生為“數學尖子生”,試判斷能否在犯錯誤的概率不超過0.1的前提下認為“數學尖子生與性別有關”.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為.

(1)設為參數,若,求直線的參數方程;

(2)已知直線與曲線交于,設,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個四棱錐的三視圖如圖所示,關于這個四棱錐,下列說法正確的是( )

A. 最長的棱長為

B. 該四棱錐的體積為

C. 側面四個三角形都是直角三角形

D. 側面三角形中有且僅有一個等腰三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,圓的參數方程為為參數),以原點為極點, 軸非負半軸為極軸建立極坐標系.

(1)求圓的極坐標方程;

(2)直線的極坐標方程為,射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C: ,過點的直線l的參數方程為: (t為參數),直線l與曲線C分別交于M、N兩點

(Ⅰ)寫出曲線C的直角坐標方程和直線l的普通方程;

(Ⅱ)若| PM |,| MN |,| PN |成等比數列,求a的值

查看答案和解析>>

同步練習冊答案