【題目】寫出與α=-1910°終邊相同的角的集合,并把集合中適合不等式-720°≤β360°的元素β寫出來.

【答案】{β|βk·360°1 910°,kZ};元素β見解析

【解析】

α=-1 910°加上可得與α=-1 910°終邊相同的角的集合,分別取k4,5,6,求得適合不等式-720°≤β360°的元素β.

α=-1 910°終邊相同的角的集合為{β|βk·360°1910°,kZ}

∵-720°≤β360°,即-720°≤k·360°1 910°360°(kZ),∴ (kZ),故取k4,5,6.

k4時,β4×360°1910°=-470°

k5時,β5×360°1910°=-110°

k6時,β6×360°1910°250°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次文藝匯演,要將A、B、C、D、E、F這六個不同節(jié)目編排成節(jié)目單,如下表:

如果A、B兩個節(jié)目要相鄰,且都不排在第3號位置,則節(jié)目單上不同的排序方式有(  。┓N

A. 192 B. 144 C. 96 D. 72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年5月,來自“一帶一路”沿線的國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購.為發(fā)展業(yè)務(wù),某調(diào)研組對兩個公司的掃碼支付準(zhǔn)備從國內(nèi) 個人口超過萬的超大城市和個人口低于萬的小城市隨機(jī)抽取若干個進(jìn)行統(tǒng)計,若一次抽取個城市,全是小城市的概率為.

(I)求的值;

(Ⅱ)若一次抽取個城市,則:

①假設(shè)取出小城市的個數(shù)為,求的分布列和期望;

②取出個城市是同一類城市求全為超大城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】峰谷電是目前在城市居民當(dāng)中開展的一種電價類別.它是將一天24小時劃分成兩個時間段,把8:00—22:00共14小時稱為峰段,執(zhí)行峰電價,即電價上調(diào);22:00—次日8:00共10個小時稱為谷段,執(zhí)行谷電價,即電價下調(diào).為了進(jìn)一步了解民眾對峰谷電價的使用情況,從某市一小區(qū)隨機(jī)抽取了50 戶住戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以,,,,(單位:度)分組的頻率分布直方圖如下圖:

若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價的戶數(shù)如下表:

月平均用電量(度)

使用峰谷電價的戶數(shù)

3

9

13

7

2

1

(1)估計所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:

一般用戶

大用戶

使用峰谷電價的用戶

不使用峰谷電價的用戶

()根據(jù)()中的列聯(lián)表,能否有的把握認(rèn)為 “用電量的高低”與“使用峰谷電價”有關(guān)?

0.025

0.010

0.001

5.024

6.635

10.828

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長分別為,第三邊上的中線長為,則三角形的外接圓半徑為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且過點.直線交于,兩點,點的左焦點.

(1)求橢圓的方程;

(2)若過點且不與軸重合,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, ,

)求證: 平面

)求二面角的余弦值.

)在線段(含端點)上,是否存在一點,使得平面,若存在,求出的值;若不存在,請說明理由.

【答案】)見解析;;)存在,

【解析】試題分析:(1由題意,證明, ,證明;(2)建立空間直角坐標(biāo)系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, 所以存在中點.

試題解析:

,

,,,

,且,

、,

)知,

, , 兩兩垂直,以為坐標(biāo)原點,

, , , 軸建系.

設(shè),則, , , , ,

,

設(shè)的一個法向量為

,取,則

由于是面的法向量,

∵二面角為銳二面角∴余弦值為

)存在點

設(shè), ,

,

,

,

,

,∴,∴存在中點.

型】解答
結(jié)束】
19

【題目】已知函數(shù)

)當(dāng)時,求此函數(shù)對應(yīng)的曲線在處的切線方程.

)求函數(shù)的單調(diào)區(qū)間.

)對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是直角梯形,其中,,.點的中點,將沿折起如圖,使得平面.點、分別是線段、的中點.

(1)求證:;

(2)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) .

(1)當(dāng)時,討論的單調(diào)性;

(2)若函數(shù)有兩個極值點,且,證明: .

查看答案和解析>>

同步練習(xí)冊答案