如圖,四棱錐的底面是正方形,⊥平面,
(1)求證:;
(2)求二面角的大小.
(1)證明見解析;(2) .
【解析】
試題分析:(1)要證線線垂直,一般通過證明線面垂直來實(shí)現(xiàn),那么我們就要尋找圖形中已有哪些與待證線垂直的直線,本題中首先由已知有,又有平面,則,故可證明與過的平面垂直,從而得線線垂直;(2)要求二面角的大小,一般須根據(jù)定義作出二面角的平面角,在三角形中解出,而平面角就是要與二面角的棱垂直的直線(射線),題中棱是,在兩個(gè)面(半平面)內(nèi)與垂直的直線是哪個(gè)呢?注意到已知,因此有,從而與都是以為底邊的等腰三角形,故垂直關(guān)系就是取底邊中點(diǎn),根據(jù)等腰三角形的性質(zhì)有,,就是我們要找的平面角.
試題解析:(1)連接BD,∵⊥平面
平面
∴AC⊥SD 4分
又四邊形ABCD是正方形,∴AC⊥BD
∴AC ⊥平面SBD
∴AC⊥SB. 6分
(2)設(shè)的中點(diǎn)為,連接、,
∵SD=AD,CS=CA,
∴DE⊥SA, CE⊥SA.
∴是二面角的平面角. 9分
計(jì)算得:DE=,CE=,CD=2,則CD⊥DE.
,
所以所求二面角的大小為 . 12分
考點(diǎn):(1)線線垂直;(2)二面角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年朝陽區(qū)二模文)(13分)
如圖,四棱錐的底面是矩形,底面,為邊的中點(diǎn),與平面所成的角為,且,.
(Ⅰ) 求證:平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東實(shí)驗(yàn)中學(xué)診斷三理)(13分)如圖:四棱錐的底面是提醒,腰,平分且與垂直,側(cè)面都垂直于底面,平面與底面成60°角
(1)求證:;
(2)求二面角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第八次月考文科數(shù)學(xué)試卷 題型:解答題
如圖,四棱錐的底面是平行四邊形,平面,,,
點(diǎn)是上的點(diǎn),且.
(Ⅰ)求證:;
(Ⅱ)求的值,使平面;
(Ⅲ)當(dāng)時(shí),求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期摸底理科數(shù)學(xué) 題型:解答題
((本小題滿分14分)如圖,四棱錐的底面是正方形,側(cè)棱底面,,、分別是棱、的中點(diǎn).
(1)求證:; (2) 求直線與平面所成的角的正切值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題
(本小題滿分12 分)
如圖,四棱錐的底面是邊長為的菱形,
,平面,,為的中點(diǎn),O為底面對角線的交點(diǎn);
(1)求證:平面平面;
(2)求二面角的正切值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com