【題目】已知兩個(gè)命題p:sinx+cosx>m,q:x2+mx+1>0.如果對(duì)任意x∈R,p與q有且僅有一個(gè)是真命題.求實(shí)數(shù)m的取值范圍.

【答案】【解答】
解:∵
∴當(dāng)p是真命題時(shí),m<
又∵對(duì)任意x∈R,q為真命題,
x2+mx+1>0恒成立,
有Δ=m2-4<0,∴-2<m<2.
∴當(dāng)p為真,q為假時(shí),m< ,且m≤-2或m≥2,
即m≤-2,
當(dāng)p為假,q為真時(shí),m≥ 且-2<m<2,即 ≤m<2,
綜上,實(shí)數(shù)m的取值范圍是m≤-2或 ≤m<2.
【解析】因?yàn)閜與q有且僅有一個(gè)是真命題,所以p、q一真一假;判斷命題的真假,直接利用相關(guān)定義、定理、公理判斷即可。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解全稱命題(全稱命題,它的否定;全稱命題的否定是特稱命題).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ln(2﹣x)[x﹣(3m+1)]的定義域?yàn)榧螦,集合B={x| <0}
(1)當(dāng)m=3時(shí),求A∩B;
(2)求使BA的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-5:不等式選講】

已知函數(shù)f(x)=|x+1|+|x-3|.

(1)若關(guān)于x的不等式f(x)<a有解,求實(shí)數(shù)a的取值范圍:

(2)若關(guān)于x的不等式f(x)<a的解集為(b, ),求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分如圖,橢圓的離心率短軸的兩個(gè)端點(diǎn)分別為B1、B2焦點(diǎn)為F1、F2四邊形F1 B1F2 B2的內(nèi)切圓半徑為

1求橢圓C的方程;

2過左焦點(diǎn)F1的直線交橢圓于M、N兩點(diǎn),交直線于點(diǎn)P設(shè),,試證為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假;寫出這些命題的否定并判斷真假.
(1)三角形的內(nèi)角和為180°;
(2)每個(gè)二次函數(shù)的圖象都開口向下;
(3)存在一個(gè)四邊形不是平行四邊形;
(4);
(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn), ,則實(shí)數(shù)m的取值范圍是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為實(shí)數(shù)集R,函數(shù)f(x)=lg(2x﹣1)的定義域?yàn)锳,集合B={x||x|﹣a≤0}(a∈R)
(1)若a=2,求A∪B和A∩B
(2)若RA∪B=RA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABCABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時(shí),求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.已知購(gòu)買一張彩票中獎(jiǎng)的概率為 ,則購(gòu)買1000張這種彩票一定能中獎(jiǎng)
B.互斥事件一定是對(duì)立事件
C.如圖,直線l是變量x和y的線性回歸方程,則變量x和y相關(guān)系數(shù)在﹣1到0之間
D.若樣本x1 , x2 , …xn的方差是4,則x1﹣1,x2﹣1,…xn﹣1的方差是3

查看答案和解析>>

同步練習(xí)冊(cè)答案