【題目】已知點Q是圓上的動點,點,若線段QN的垂直平分線MQ于點P.
(I)求動點P的軌跡E的方程
(II)若A是軌跡E的左頂點,過點D(-3,8)的直線l與軌跡E交于B,C兩點,求證:直線AB、AC的斜率之和為定值.
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機摘下了100個黃桃進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機抽取5個,再從這5個黃桃中隨機抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:
A.所有黃桃均以20元/千克收購;
B.低于350克的黃桃以5元/個收購,高于或等于350克的以9元/個收購.
請你通過計算為該村選擇收益最好的方案.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓 的離心率為,且過點.
(I)求橢圓的標準方程;
(II)設點,是橢圓上異于頂點的任意兩點,直線,的斜率分別為,且.
①求的值;
②設點關于軸的對稱點為,試求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,已知橢圓 C:=1(a>b>0)的離心率為,且過點,點P在第四象限, A為左頂點, B為上頂點, PA交y軸于點C,PB交x軸于點D.
(1) 求橢圓 C 的標準方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,腰長為2,D、E分別是邊AB、BC的中點,將△BDE沿DE翻折,得到四棱錐B﹣ADEC,且F為棱BC中點,BA.
(1)求證:EF⊥平面BAC;
(2)在線段AD上是否存在一點Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若直線l:x+y=0與圓C交于A,B兩點,求弦AB的長;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某教研部門對本地區(qū)甲、乙、丙三所學校高三年級進行教學質(zhì)量抽樣調(diào)查,甲、乙、丙三所學校高三年級班級數(shù)量(單位:個)如下表所示。研究人員用分層抽樣的方法從這三所學校中共抽取6個班級進行調(diào)查.
學校 | 甲 | 乙 | 丙 |
數(shù)量 | 4 | 12 | 8 |
(1)求這6個班級中來自甲、乙、丙三所學校的數(shù)量;
(2)若在這6個班級中隨機抽取2個班級做進一步調(diào)查,
①列舉出所有可能的抽取結果;
②求這2個班級來自同一個學校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電子計算機誕生于20世紀中葉,是人類最偉大的技術發(fā)明之一.計算機利用二進制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計算結果用十進制表示為
A. 254B. 381C. 510D. 765
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com