【題目】四棱錐S﹣ABCD的底面ABCD是正方形,各側(cè)棱長與底面的邊長均相等,M為SA的中點,則直線BM與SC所成的角的余弦值為( )
A.
B.
C.
D.

【答案】C
【解析】解:過點P作PO⊥平面ABCD,交ABCD于點O,

以O(shè)為原點,過O作DA的平行線為x軸,過O作AB的平行線為y軸,OS為z軸,建立空間直角坐標系,

如圖所示:

設(shè)正四棱錐S﹣ABCD側(cè)棱長與底面邊長都為2,

則A(1,﹣1,0),OB= ,OS= = ,B(1,1,0),

S(0,0, ),C(﹣1,1,0),M( ,﹣ , ),

=(﹣ ,﹣ , ), =(﹣1,1,﹣ ),

設(shè)BE與SA所成角為θ,

則cosθ= =

∴BM與SC所成角的余弦值為

所以答案是:C.

【考點精析】認真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax,g(x)=ex﹣3ax,其中a為實數(shù),若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,則a的取值范圍是(
A.( ,+∞)
B.[ ,+∞)
C.(1,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=﹣x3+ax2+bx+c的導數(shù)f'(x)滿足f'(﹣1)=0,f'(2)=9.
(1)求f(x)的單調(diào)區(qū)間;
(2)f(x)在區(qū)間[﹣2,2]上的最大值為20,求c的值.
(3)若函數(shù)f(x)的圖象與x軸有三個交點,求c的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 ,方程x2+y2﹣2mx﹣2y+m+3=0表示圓.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)當m=﹣2時,試判斷直線l與該圓的位置關(guān)系,若相交,求出相應(yīng)弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個科研小組有4位男組員和2位女組員,其中一位男組員和一位女組員不會英語,其他組員都會英語,現(xiàn)在要用抽簽的方法從中選出兩名組員組成一個科研攻關(guān)小組.
(Ⅰ)求組成攻關(guān)小組的成員是同性的概率;
(Ⅱ)求組成攻關(guān)小組的成員中有會英語的概率;
(Ⅲ)求組成攻關(guān)小組的成員中有會英語并且是異性的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位打字員在兩臺電腦上各自輸入A,B兩種類型的文件的部分文字才能使這兩類文件成為成品.已知A文件需要甲輸入0.5小時,乙輸入0.2小時;B文件需要甲輸入0.3小時,乙輸入0.6小時.在一個工作日中,甲至多只能輸入6小時,乙至多只能輸入8小時,A文件每份的利潤為60元,B文件每份的利潤為80元,則甲、乙兩位打字員在一個工作日內(nèi)獲得的最大利潤是元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,解關(guān)于x的不等式(a﹣1)x2+(2a+3)x+a+2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx﹣cosx)2+ sin(2x+ )(x∈R).
(1)求函數(shù)f(x)的遞減區(qū)間;
(2)若f(α)= ,α∈( , ),求cos(2α+ ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義 為n個正數(shù)p1 , p2 , …,pn的“均倒數(shù)”.若已知正數(shù)數(shù)列{an}的前n項的“均倒數(shù)”為 ,又bn= ,則 + + +…+ =( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案