已知{an}是公比大于1的等比數(shù)列,a1,a3是函數(shù)f(x)=x+
9x
-10的兩個零點.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=log3an+n+2,且b1+b2+b3+…+bn≥80,求n的最小值.
分析:(Ⅰ)由f(x)=x+
9
x
-10=0,得x2-10x+9=0,解得x1=1,x2=9,由{an}是公比q大于1的等比數(shù)列,a1,a3是函數(shù)f(x)=x+
9
x
-10的兩個零點,知a1=1,a3=9,由此能求出數(shù)列{an}的通項公式.
(Ⅱ)由an=3n-1,知bn=log3an+n+2=log33n-1+n+2=2n+1,由此得到b1+b2+b3+…+bn=n2+2n,由b1+b2+b3+…+bn≥80,得n2+2n≥80,由此能求出n的最小值.
解答:解:(Ⅰ)由f(x)=x+
9
x
-10=0,得x2-10x+9=0,
解得x1=1,x2=9,
∵{an}是公比q大于1的等比數(shù)列,a1,a3是函數(shù)f(x)=x+
9
x
-10的兩個零點,
∴a1=1,a3=9,
∴1×q2=9,∴q=3,
an=1×3n-1=3n-1
(Ⅱ)∵an=3n-1,
∴bn=log3an+n+2=log33n-1+n+2=2n+1,
∴b1+b2+b3+…+bn=(2×1+1)+(2×2+1)+(2×3+1)+…+(2n+1)
=2(1+2+3+…+n)+n
=n(n+1)+n
=n2+2n,
∵b1+b2+b3+…+bn≥80,
∴n2+2n≥80,
解得n≥8,或n≤-10(舍),
故n的最小值為8.
點評:本題考查數(shù)列{an}的通項公式的求法和求n的最小值.解題時要認真審題,注意等比數(shù)列的通項公式和等差數(shù)列前n項和公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知{an}是公比為q≠1的等比數(shù)列,且a1,a3,a2成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設{bn}是以2為首項,q為公差的等差數(shù)列,其前n項和為Sn,求使Sn>0成立的最大的n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是以a(a>0)為首項以q(-1<q<0)為公比的等比數(shù)列,設A=
lim
n→∞
(a1+a2+…+an)
,B=
lim
n→∞
(a1+a2+a3+…+a2n)
C=
lim
n→∞
(a1+a3+a5+…+a2n-1)
,D=
lim
n→∞
(a2+a4+a6+…+a2n)
,則A、B、C、D中最大的取值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是公比大小于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3=7,且a1+3,3a2,a3+4構成等差數(shù)列.
(I)求數(shù)列{an}的通項公式an;
(II)設cn=log2an+1,數(shù)列{cncn+2}的前n項和為Tn,是否存在正整數(shù)m,使得Tn
1cmcm+1
對于n∈N*恒成立?若存在,求出m的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省黃岡中學高一(下)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知{an}是公比為q≠1的等比數(shù)列,且a1,a3,a2成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設{bn}是以2為首項,q為公差的等差數(shù)列,其前n項和為Sn,求使Sn>0成立的最大的n的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年學湖北省黃岡市中學高一(下)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知{an}是公比為q≠1的等比數(shù)列,且a1,a3,a2成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設{bn}是以2為首項,q為公差的等差數(shù)列,其前n項和為Sn,求使Sn>0成立的最大的n的值.

查看答案和解析>>

同步練習冊答案