已知,試證明至少有一個(gè)不小于1.

見解析

解析試題分析:先假設(shè)結(jié)論的反面成立,即假設(shè)均小于1,即,則有,然后通過(guò)不等式推出矛盾即可.
假設(shè)均小于1,即,則有
,矛盾.   所以原命題成立
考點(diǎn):反證法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

觀察下列式子:
,
則可以猜想的結(jié)論為:__________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題


(1)由“若”類比“若為三個(gè)向量則
(2)在數(shù)列中,猜想
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”
(4)已知,則.
上述四個(gè)推理中,得出的結(jié)論正確的是____ .(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)用反證法證明:在一個(gè)三角形中,至少有一個(gè)內(nèi)角大于或等于;
(2)已知,試用分析法證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1)求證:當(dāng)時(shí),
2)證明: 不可能是同一個(gè)等差數(shù)列中的三項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n個(gè)圖的蜂巢總數(shù).

(1)試給出f(4),f(5)的值,并求f(n)的表達(dá)式(不要求證明);
(2)證明:+…+<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若不等式+…+>對(duì)一切正整數(shù)n都成立,猜想正整數(shù)a的最大值,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

⑴用綜合法證明:;
⑵用反證法證明:若均為實(shí)數(shù),且,,求證中至少有一個(gè)大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

用反證法證明:如果x>,那么x2+2x-1≠0.

查看答案和解析>>

同步練習(xí)冊(cè)答案