已知函數(shù)f(x)=
x-a
ax
,其中a>0
(1)判斷并證明y=f(x)在(0,+∞)上的單調(diào)性;
(2)若存在x0,使f(x0=x0),則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求實(shí)數(shù)a的值,并求出不動(dòng)點(diǎn)x0;
(3)若存在x∈[
1
2
,3]使f(x)>x成立,求實(shí)數(shù)a的取值范圍.
分析:(1)先對(duì)函數(shù)的表達(dá)式進(jìn)行化簡(jiǎn),然后根據(jù)函數(shù)單調(diào)性的定義進(jìn)行判斷;
(2)令x=
x-a
ax
轉(zhuǎn)化為二次函數(shù),根據(jù)該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),令判別式等于0即可求出a的值;
(3)要存在x∈[
1
2
,3]使f(x)>x成立,只需f(x)-x的最大值大于0即可,然后利用參變量分離,從而求出實(shí)數(shù)a的取值范圍.
解答:解:(1)f(x)=
x-a
ax
=
1
a
-
1
x
,
對(duì)任意的x1,x2∈(0,+∞)且x1>x2
f(x1)-f(x2)=
1
a
-
1
x1
-(
1
a
-
1
x2
)=
x1-x2
x1x2

∵x1>x2>0
∴x1-x2>0,x1x2>0
∴f(x1)-f(x2)>0,函數(shù)y=f(x)在x∈(0,+∞)上單調(diào)遞增.
(2)解:令x=
x-a
ax
⇒ax2-x+a=0,
令△=1-4a2=0解得a=
1
2
(負(fù)值舍去)
將a=
1
2
代入ax2-x+a=0得
1
2
x2-x+
1
2
=0解得x0=1
(3)存在x∈[
1
2
,3]使f(x)>x成立即存在x∈[
1
2
,3]使f(x)=
x-a
ax
>x,
即存在x∈[
1
2
,3]使得ax2-x+a<0即a<
1
x+
1
x

∴a<
1
2
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的定義和基本不等式的應(yīng)用.考查計(jì)算能力和綜合運(yùn)用能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案