【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,極坐標(biāo)系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.

1)分別寫(xiě)出的極坐標(biāo)方程;

2)直線的參數(shù)方程為為參數(shù)),點(diǎn)的直角坐標(biāo)為,若直線與曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍,并求出的取值范圍.

【答案】1;;,2

【解析】

1)設(shè)弧上任意一點(diǎn)

根據(jù)ABCD是邊長(zhǎng)為2的正方形,AB所在的圓與原點(diǎn)相切,其半徑為1,求得,同理求得其他弧所對(duì)應(yīng)的極坐標(biāo)方程.

2)把直線的參數(shù)方程和的極坐標(biāo)方程都化為直角坐標(biāo)方程,利用數(shù)形結(jié)合求解,把直線的參數(shù)方程化為直線的標(biāo)準(zhǔn)參數(shù)方程,直角坐標(biāo)方程聯(lián)立,再利用參數(shù)的幾何意義求解.

1)如圖所示:

設(shè)弧上任意一點(diǎn)

因?yàn)?/span>ABCD是邊長(zhǎng)為2的正方形,AB所在的圓與原點(diǎn)相切,其半徑為1,

所以

所以的極坐標(biāo)方程為;

同理可得:的極坐標(biāo)方程為

的極坐標(biāo)方程為;

的極坐標(biāo)方程為,

2)因?yàn)橹本的參數(shù)方程為

所以消去t,過(guò)定點(diǎn)

直角坐標(biāo)方程為

如圖所示:

因?yàn)橹本與曲線有兩個(gè)不同交點(diǎn),

所以

因?yàn)橹本的標(biāo)準(zhǔn)參數(shù)方程為,代入直角坐標(biāo)方程

所以

所以

所以的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,分別為的中點(diǎn).

(Ⅰ)證明:平面平面;

(Ⅱ)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購(gòu)物越來(lái)越受到人們的喜愛(ài),各大購(gòu)物網(wǎng)站為增加收入,促銷(xiāo)策略越來(lái)越多樣化,促銷(xiāo)費(fèi)用也不斷增加.下表是某購(gòu)物網(wǎng)站2017年1-8月促銷(xiāo)費(fèi)用(萬(wàn)元)和產(chǎn)品銷(xiāo)量(萬(wàn)件)的具體數(shù)據(jù).

1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系,請(qǐng)建立關(guān)于的回歸方程(系數(shù)精確到);

2)已知6月份該購(gòu)物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷(xiāo)量, 則每位員工每日獎(jiǎng)勵(lì)100元; ,則每位員工每日獎(jiǎng)勵(lì)150元; ,則每位員工每日獎(jiǎng)勵(lì)200元.現(xiàn)已知該網(wǎng)站6月份日銷(xiāo)量服從正態(tài)分布請(qǐng)你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元.(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位)

參考數(shù)據(jù) , 其中, 分別為第個(gè)月的促銷(xiāo)費(fèi)用和產(chǎn)品銷(xiāo)量, .

參考公式

1)對(duì)于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計(jì)分別為 .

2)若隨機(jī)變量服從正態(tài)分布, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2當(dāng) 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,圓.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,直線經(jīng)過(guò)點(diǎn)且傾斜角為.

求圓的直角坐標(biāo)方程和直線的參數(shù)方程;

已知直線與圓交與,,滿足的中點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=x2-a+1x+alnx+1

(Ⅰ)若x=3fx)的極值點(diǎn),求fx)的極大值;

(Ⅱ)求a的范圍,使得fx≥1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等腰梯形中,,的中點(diǎn).將沿折起后如圖2,使二面角成直二面角,設(shè)的中點(diǎn),是棱的中

點(diǎn).

1)求證:;

2)求證:平面平面

3)判斷能否垂直于平面,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且

證明:直線與圓相切;

面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案