設(shè)變量x、y滿足
2x+7y-14≥0
5x+2y-10≥0
x,y∈N
,則4x+9y的最小值為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=4x+9y得y=-
4
9
x+
z
9

平移直線y=-
4
9
x+
z
9
,由圖象可知當(dāng)直線y=-
4
9
x+
z
9
,經(jīng)過點(diǎn)A(4,1)時(shí),
直線y=-
4
9
x+
z
9
的截距最小,此時(shí)z最小,
由此時(shí)4×4+9×2=25,
故答案為:25.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A,D分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)和上頂點(diǎn),橢圓的左右焦點(diǎn)分別是F1和F2,點(diǎn)P是線段AD上的動(dòng)點(diǎn),如果
PF1
PF2
的最大值2,最小值是-
2
3
,那么,橢圓的C的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2,圓心A(a,b),半徑r,若點(diǎn)M(x0,y0)在圓上,則
 
;若點(diǎn)M(x0,y0)在圓外,則
 
;若點(diǎn)M(x0,y0)在圓內(nèi),則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在空間四邊形ABCD中,G是△BCD的重心,E、F、H分別為邊CD、AD和BC的中點(diǎn),化簡下列各表達(dá)式,并標(biāo)出化簡結(jié)果的向量.
(1)
AG
+
1
3
BE
+
1
2
CA

(2)
1
2
AB
+
AC
-
AD

(3)
1
3
AB
+
AC
+
AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線上
x2
16
-
y2
9
=1除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1,F(xiàn)2分別為左右焦點(diǎn),若△PF1F2內(nèi)切圓與F1F2切于點(diǎn)M,則|F1M|•|F2M|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a2=2,a4a6=4a72,則a4的值為( 。
A、
1
2
B、1
C、2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,E是AD的中點(diǎn),P是AB邊上的點(diǎn),AB=3,AD=2
(1)設(shè)AP=x,△DPE的周長為y,求函數(shù)y=f(x)的解析式;
(2)當(dāng)∠DPE取得最大值時(shí),求AP的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖Rt△O′A′B′是一平面圖形的直觀圖,直角邊O′B′=2,則這個(gè)平面圖形的面積是( 。
A、2
2
B、1
C、4
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,則函數(shù)y=2-3x-
1
x
有最大值
 

查看答案和解析>>

同步練習(xí)冊(cè)答案