【題目】下列敘述: ①函數(shù) 是奇函數(shù);
②函數(shù) 的一條對稱軸方程為 ;
③函數(shù) , ,則f(x)的值域為 ;
④函數(shù) 有最小值,無最大值.
所有正確結論的序號是

【答案】②④
【解析】解:①函數(shù) ,顯然f(﹣x)≠f(x),不是奇函數(shù),故錯誤; ②f(﹣ )=﹣1, 的一條對稱軸方程為 ,故正確;
③函數(shù) , ,2x+ ,則f(x)的值域為[﹣1, ],故錯誤;
④函數(shù) ,f(x)≥4,有最小值,無最大值,故正確.
所以答案是②④.
【考點精析】本題主要考查了命題的真假判斷與應用的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知B=45°,D是BC邊上的一點,AD=4,AC=2 ,DC=2
(1)求cos∠ADC
(2)求AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣2)2=4.
(1)求直線2x﹣y+4=0被圓C所截得的弦長;
(2)求過點M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直棱柱ABC﹣A1B1C1中,AC=BC=CC1= AB,E是線段CC1的中點,連接AE,B1E,AB1 , B1C,BC1 , 得到的圖形如圖所示. (Ⅰ)證明BC1⊥平面AB1C;
(Ⅱ)求二面角E﹣AB1﹣C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設x,y滿足約束條件: ;則z=x﹣2y的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知
(1)求函數(shù)f(x)的最小正周期和最大值,并求出x為何值時,f(x)取得最大值;
(2)求函數(shù)f(x)在[﹣2π,2π]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若先將函數(shù)y= sin(x﹣ )+cos(x﹣ )圖象上各點的縱坐標不變,橫坐標縮短到原來的 倍,再將所得圖象向左平移 個單位,所得函數(shù)圖象的一條對稱軸的方程是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某港口的水深y(米)是時間t(0≤t≤24,單位:小時)的函數(shù),下面是每天時間與水深的關系表:

t

0

3

6

9

12

15

18

21

24

y

10

13

9.9

7

10

13

10.1

7

10

經(jīng)過長期觀測,y=f(t)可近似的看成是函數(shù)y=Asinωt+b
(1)根據(jù)以上數(shù)據(jù),求出y=f(t)的解析式;
(2)若船舶航行時,水深至少要11.5米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長都相等的四面體PABC中,DE、F分別是AB、BCCA的中點,則下面四個結論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

同步練習冊答案