【題目】設|θ|< ,n為正整數(shù),數(shù)列{an}的通項公式an=sin tannθ,其前n項和為Sn
(1)求證:當n為偶函數(shù)時,an=0;當n為奇函數(shù)時,an=(﹣1) tannθ;
(2)求證:對任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

【答案】
(1)證明:an=sin tannθ,

當n=2k(k∈N*)為偶數(shù)時,an=sinkπtannθ=0;

當n=2k﹣1為奇函數(shù)時,an= tannθ=(﹣1)k1tannθ=(﹣1) tannθ


(2)證明:a2k1+a2k=(﹣1) tannθ.∴奇數(shù)項成等比數(shù)列,首項為tanθ,公比為﹣tan2θ.

∴S2n= = sin2θ[1+(﹣1)n+1tan2nθ]


【解析】(1)利用sin = ,即可得出.(2)a2k1+a2k=(﹣1) tannθ.利用等比數(shù)列的求和公式即可得出.
【考點精析】關于本題考查的數(shù)列的前n項和,需要了解數(shù)列{an}的前n項和sn與通項an的關系才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程為ρ=2,在以極點為直角坐標原點O,極軸為x軸的正半軸建立的平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)在平面直角坐標系中,設曲線C經(jīng)過伸縮變換φ: 得到曲線C′,若M(x,y)為曲線C′上任意一點,求點M到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點,若二面角A﹣B1E﹣B的正弦值為 ,求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高級中學共有900名學生,現(xiàn)用分層抽樣的方法從該校學 生中抽取1個容量為45的樣本,其中高一年級抽20人,高三年級抽10人,則該校高二年級學生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1、F2是雙曲線 =1(a>0,b>0)的左、右焦點,P是雙曲線右支上一點,滿足( + =0(O為坐標原點),且3| |=4| |,則雙曲線的離心率為(
A.2
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三角形ABC中,B(﹣1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)P為軌跡M上動點,△PBC的內(nèi)切圓面積為S1 , 外接圓面積為S2 , 當P在M上運動時,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù) 向右平移 個單位后得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間[a,b](b>a)上的值域是 ,則b﹣a的最小值m和最大值M分別為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的頂點在坐標原點,焦點F在y軸正半軸上,過點F的直線交拋物線于A,B兩點,線段AB的長是8,AB的中點到x軸的距離是3.
(1)求拋物線的標準方程;
(2)設直線m在y軸上的截距為6,且與拋物線交于P,Q兩點,連結(jié)QF并延長交拋物線的準線于點R,當直線PR恰與拋物線相切時,求直線m的方程.

查看答案和解析>>

同步練習冊答案