【題目】設(shè),,其中m是不等于零的常數(shù),
(1)時(shí),直接寫(xiě)出的值域;
(2)求的單調(diào)遞增區(qū)間;
(3)已知函數(shù)(),定義:(),().其中,表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值.例如:,,則,,,.當(dāng)時(shí),設(shè),不等式恒成立,求t,n的取值范圍;
【答案】(1);(2)時(shí),在遞增;時(shí),在遞增時(shí),在遞增(3),
【解析】
(1)將代入函數(shù)的表達(dá)式中,運(yùn)用函數(shù)單調(diào)性直接得到函數(shù)的值域.
(2)運(yùn)用導(dǎo)數(shù)先對(duì)函數(shù)求導(dǎo),然后分類(lèi)討論的值,在不同情況下得到函數(shù)的單調(diào)遞增區(qū)間
(3)閱讀題意,結(jié)合題中所給的信息,先表示出的表達(dá)式,然后再求出和,最后化簡(jiǎn)出不等式,解不等式恒成立的情況得到結(jié)果
(1)當(dāng)時(shí), ,,所以的值域?yàn)?/span>,綜上.
(2)因?yàn)?/span>,所以,
當(dāng)時(shí), ,則在上單調(diào)遞增;
當(dāng)時(shí),令,解得,
若,即時(shí), 恒成立, 則在上單調(diào)遞增;
若,即時(shí),令,解得,則在上單調(diào)遞增.
綜上, 時(shí),在遞增;時(shí),在遞增時(shí),在遞增.
(3)由題意得, 當(dāng)時(shí),,,
則,,令解得;令解得;令解得,化簡(jiǎn)得
即,結(jié)合題意計(jì)算可得;;計(jì)算得;可得,又因?yàn)?/span>恒成立,所以,.
綜上,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長(zhǎng)為2的正方形.
(1)求橢圓的方程;
(2)設(shè)是橢圓上一點(diǎn),為橢圓長(zhǎng)軸上一點(diǎn),求的最大值與最小值;
(3)設(shè)是橢圓外的動(dòng)點(diǎn),滿足,點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知無(wú)窮數(shù)列的前項(xiàng)和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,,,且,求數(shù)列的前項(xiàng)和;
(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓與長(zhǎng)軸是短軸兩倍的橢圓:相切于點(diǎn)
(1)求橢圓與圓的方程;
(2)過(guò)點(diǎn)引兩條互相垂直的兩直線與兩曲線分別交于點(diǎn)與點(diǎn)(均不重合).若為橢圓上任一點(diǎn),記點(diǎn)到兩直線的距離分別為,求的最大值,并求出此時(shí)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線l與橢圓C交于、,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱(chēng)直線l具有性質(zhì)H.
(1)求橢圓C的方程;
(2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;
(3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)P、Q、R,使得直線、、都具有性質(zhì)H.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求出,,的值,并求出及數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和;
(3)設(shè),在數(shù)列中取出(且)項(xiàng),按照原來(lái)的順序排列成一列,構(gòu)成等比數(shù)列,若對(duì)任意的數(shù)列,均有,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】福彩是利國(guó)利民游戲,其刮刮樂(lè)之《藍(lán)色奇跡》:如圖(1)示例,刮開(kāi)票面看到最左側(cè)一列四個(gè)兩位數(shù)字為“我的號(hào)碼”,最上行四個(gè)兩位數(shù)為“中獎(jiǎng)號(hào)碼”,這八個(gè)兩位數(shù)是00至99這一百個(gè)數(shù)字隨機(jī)產(chǎn)生的,若兩個(gè)數(shù)字相同即中得其相交線上的獎(jiǎng)金,獎(jiǎng)金可以累加.小明買(mǎi)的一張《藍(lán)色奇跡》刮刮樂(lè)如圖(2),除了一個(gè)“我的號(hào)碼”外,他已經(jīng)刮開(kāi)票面上其它所有數(shù)字,依據(jù)目前的信息,小明從這張刮刮樂(lè)得到的獎(jiǎng)金額高于600元的概率為(無(wú)所得稅)( )
圖(1) 圖(2)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,棱長(zhǎng)為a的正方體,N是棱的中點(diǎn);
(1)求直線AN與平面所成角的大小;
(2)求到平面ANC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面是正方形,平面,,是的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的大小;
(3)試判斷所在直線與平面是否平行,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com