【題目】如圖,設(shè)點, , 分別為橢圓的左頂點和左,右焦點,過點作斜率為的直線交橢圓于另一點,連接并延長交橢圓于點.

(1)求點的坐標(用表示);

(2)若,求的值.

【答案】(1)(2)

【解析】試題分析:(1)首先求出左頂點,然后求出直線方程為: ,聯(lián)立橢圓方程與直線方程,消去未知數(shù),得到關(guān)于的一元二次方程,然后根據(jù)韋達定理表示出兩根之積,然后就可以得到點橫坐標,再帶入直線方程,得出總坐標;(2)易知左焦點,右焦點,又根據(jù),所以,則所在直線方程為,同樣可以求出直線的方程,然后聯(lián)立兩直線方程,可以求出交點的坐標,將點坐標帶入橢圓方程后,便可以求出值.

試題解析:(1)設(shè)點,直線的方程為,聯(lián)立得, ,

,即,

,即.

(2)易知 , ,

所以直線 方程分別為 ,

,解得,代入

,即,得,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關(guān)于點( ,0)對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于直線x= 對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出20個數(shù),1,2,4,7,11,…,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,…,以此類推,如圖所示的程序框圖的功能是計算這20個數(shù)的和.

(1)請在程序框圖中填寫兩個_______內(nèi)缺少的內(nèi)容;

(2)請補充完整該程序框圖對應(yīng)的計算機程序(用WHILE語句編寫).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年年歲史詩大劇《羋月傳》風靡大江南北,影響力不亞于以前的《甄嬛傳》,某記者調(diào)查了大量《羋月傳》的觀眾,發(fā)現(xiàn)年齡段與愛看的比例存在較好的線性相關(guān)關(guān)系,年齡在, , , 的愛看比例分別為, , , ,現(xiàn)用這5個年齡段的中間值代表年齡段,如12代表,17代表,根據(jù)前四個數(shù)據(jù)求得關(guān)于愛看比例的線性回歸方程為,由此可推測的值為( )

A. 33 B. 35 C. 37 D. 39

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題錯誤的是( )

A. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

B. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

C. 如果平面平面,平面平面 ,那么平面

D. 如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點在圓 上運動,定點,線段的垂直平分線與直線的交點為

(Ⅰ)求的軌跡的方程;

(Ⅱ)過點的直線 分別交軌跡, 兩點和, 兩點,且.證明:過中點的直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在(0,2π)內(nèi),使sinx﹣cosx<0成立的x取值范圍是(
A.( ,
B.(0,
C.( ,π)∪( ,2π)
D.(0, )∪( ,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱(側(cè)棱與底面垂直的棱柱)ABC﹣A1B1C1中,點G是AC的中點.

(1)求證:B1C∥平面 A1BG;

(2)若AB=BC, ,求證:AC1⊥A1B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+=0相切.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若直線l:y=kx+m與橢圓C相交于A、B兩點,且kOAkOB=,判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

同步練習冊答案