PT切⊙O于點(diǎn)T,PB是⊙O的割線,與⊙O交于A、B兩點(diǎn),且過(guò)圓心O,若∠OPT=30°,PT=20 cm,則PB等于          .

思路解析:連結(jié)OT,則OTPT,在Rt△POT中,∠OPT =30°,PT =20,所以OT =OB =,PO =,從而PB =PO +OB = + =.

答案:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
已知圓O直徑AB=4,將線段AB延長(zhǎng)到點(diǎn)P,使BP=1.作直線PT切圓O于點(diǎn)T.
(1)求線段PT的長(zhǎng);
(2)求線段AT的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州模擬)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.
B.選修4-2:矩陣與變換
已知矩陣M=
21
34

(1)求矩陣M的逆矩陣;
(2)求矩陣M的特征值及特征向量;
C.選修4-2:矩陣與變換
在平面直角坐標(biāo)系x0y中,求圓C的參數(shù)方程為
x=-1+rcosθ
y=rsinθ
為參數(shù)r>0),以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
4
)=2
2
.若直線l與圓C相切,求r的值.
D.選修4-5:不等式選講
已知實(shí)數(shù)a,b,c滿足a>b>c,且a+b+c=1,a2+b2+c2=1,求證:1<a+b<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇三模)選修4-1:幾何證明選講
如圖,半徑分別為R,r(R>r>0)的兩圓⊙O,⊙O1內(nèi)切于點(diǎn)T,P是外圓⊙O上任意一點(diǎn),連PT交⊙O1于點(diǎn)M,PN與內(nèi)圓⊙O1相切,切點(diǎn)為N.求證:PN:PM為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P是半圓O的直徑BC延長(zhǎng)線上一點(diǎn),PT切半圓于點(diǎn)T,TH⊥BC于H,若PT=1,PB+PC=2a,則PH=( 。
精英家教網(wǎng)
A、
2
a
B、
1
a
C、
a
2
D、
a
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖2-4-16,已知AB為⊙O的直徑,PAB延長(zhǎng)線上一點(diǎn),PT切⊙OT,過(guò)點(diǎn)B的切線交AT延長(zhǎng)線于D,交PTC.

圖2-4-16

(1)試判斷△DCT的形狀.

(2)△DCT有無(wú)可能成為正三角形?若無(wú)可能,說(shuō)明為什么;若有可能,求出這時(shí)PBPA應(yīng)滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案