【題目】與正方體ABCD—A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)( )
A.有且只有1個(gè)B.有且只有2個(gè)
C.有且只有3個(gè)D.有無(wú)數(shù)個(gè)
【答案】D
【解析】
試題由于點(diǎn)D、B1顯然滿足要求,猜想B1D上任一點(diǎn)都滿足要求,然后想辦法證明結(jié)論.
解:在正方體ABCD﹣A1B1C1D1上建立如圖所示空間直角坐標(biāo)系,
并設(shè)該正方體的棱長(zhǎng)為1,連接B1D,并在B1D上任取一點(diǎn)P,
因?yàn)?/span>=(1,1,1),
所以設(shè)P(a,a,a),其中0≤a≤1.
作PE⊥平面A1D,垂足為E,再作EF⊥A1D1,垂足為F,
則PF是點(diǎn)P到直線A1D1的距離.
所以PF=;
同理點(diǎn)P到直線AB、CC1的距離也是.
所以B1D上任一點(diǎn)與正方體ABCD﹣A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離都相等,
所以與正方體ABCD﹣A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)有無(wú)數(shù)個(gè).
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,首項(xiàng)a1=1,且a3+1是a2+1與a4+2的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面上的三點(diǎn) 、 、 .
(1)求以 、 為焦點(diǎn)且過(guò)點(diǎn) 的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) 、 、 關(guān)于直線 的對(duì)稱點(diǎn)分別為 、 、 ,求以 、 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動(dòng).在1859年,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論.若根據(jù)歐拉得出的結(jié)論,估計(jì)10000以內(nèi)的素?cái)?shù)的個(gè)數(shù)為(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))
A. 1089 B. 1086 C. 434 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù))
(1)若,求函數(shù)的極值;
(2)若是函數(shù)的一個(gè)極值點(diǎn),試求出關(guān)于的關(guān)系式(用表示),并確定的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè),函數(shù).若存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)不等式組表示的區(qū)域?yàn)?/span>A,不等式組表示的區(qū)域?yàn)?/span>B.
(1)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈B的概率;
(2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)在區(qū)域B中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知橢圓C:1(a>b>0)的離心率為,左右焦點(diǎn)分別是F1,F2,以F1為圓心,以3為半徑的圓與以F2為圓心,以1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)橢圓E:1,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn).射線PO交橢圓E于點(diǎn)Q.
(i)求的值,
(ii)求△ABQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,過(guò)點(diǎn)的直線與線段分別相交于點(diǎn),若.
(1)求關(guān)于的函數(shù)解析式;
(2)定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
(3)設(shè)函數(shù)為上的偶函數(shù),當(dāng)時(shí),函數(shù)的圖像關(guān)于直線對(duì)稱,當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公安部交管局修改后的酒后違法駕駛機(jī)動(dòng)車的行為分成兩個(gè)檔次:“酒后駕車”和“醉酒駕車”,其判斷標(biāo)準(zhǔn)是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克,當(dāng)20≤X<80時(shí),認(rèn)定為酒后駕車;當(dāng)X≥80時(shí),認(rèn)定為醉酒駕車,重慶市公安局交通管理部門在對(duì)G42高速路我市路段的一次隨機(jī)攔查行動(dòng)中,依法檢測(cè)了200輛機(jī)動(dòng)車駕駛員的每100毫升血液中的酒精含量,酒精含量X(單位:毫克)的統(tǒng)計(jì)結(jié)果如下表:
X | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,+∞) |
人數(shù) | t | 1 | 1 | 1 | 1 | 1 |
依據(jù)上述材料回答下列問(wèn)題:
(1)求t的值;
(2)從酒后違法駕車的司機(jī)中隨機(jī)抽取2人,求這2人中含有醉酒駕車司機(jī)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com