已知a,b是方程4x2-4kx-1=0(k∈R)的兩個不等實根,函數(shù)f(x)=
2x-k
x2+1
的定義域為[a,b].
(1)當k=0時,求函數(shù)f(x)的值域;
(2)證明:函數(shù)f(x)在其定義域[a,b]上是增函數(shù);
(3)在(1)的條件下,設(shè)函數(shù)g(x)=x3-3m2x+
3
5
 
(-
1
2
≤x≤
1
2
 0<m<
1
2
)
,若對任意的x1∈[-
1
2
,
1
2
]
,總存在x2∈[-
1
2
,
1
2
]
,使得f(x2)=g(x1)成立,求實數(shù)m的取值范圍.
分析:(1)確定函數(shù)解析式,求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,從而可求函數(shù)f(x)的值域;
(2)確定函數(shù)在其定義域[a,b]上,導(dǎo)數(shù)為正,即可得到結(jié)論;
(3)由題意知:g(x)的值域是f(x)值域的子集,分別確定g(x)的值域、f(x)值域,即可求得實數(shù)m的取值范圍.
解答:(1)解:當k=0時,4x2-1=0,∴x=±
1
2
,∴f(x)=
2x
x2+1
,x∈[-
1
2
1
2
]
,
f′(x)=
2(1-x2)
(x2+1)2
>0

∴f(x)在[-
1
2
,
1
2
]上單調(diào)遞增
∴函數(shù)f(x)的值域為[-
4
5
,
4
5
];
(2)證明:求導(dǎo)函數(shù)可得f′(x)=2
-x2+kx+1
(x2+1)2

∵a,b是方程4x2-4kx-1=0(k∈R)的兩個不等實根
∴拋物線y=-x2+kx+
1
4
開口向下,兩根之內(nèi)的函數(shù)值必為正值
∵當x∈[a,b],-x2+kx+
1
4
≥0
,∴-x2+kx+1>0,
f′(x)=2
-x2+kx+1
(x2+1)2
>0.
∴函數(shù)f(x)在其定義域[a,b]上是增函數(shù);
(3)解:由題意知:g(x)的值域是f(x)值域的子集.
由(1)知,f(x)的值域是[-
4
5
,
4
5
]
,g'(x)=3x2-3m2,g'(x)=0⇒x=±m(xù)
x -
1
2
(-
1
2
,-m)
-m (-m,m) m (m,
1
2
)
1
2
f'(x) + 0 - 0 +
f(x) g(-
1
2
)
遞增 極大值g(-m) 遞減 極小值g(m) 遞增 g(
1
2
)
顯然
g(
1
2
)≤
4
5
g(-
1
2
)≥-
4
5
,
∴欲使g(x)的值域是f(x)值域的子集,只需
g(-m)≤
4
5
g(m)≥-
4
5
,解得:0<m≤
3
1
10
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與值域,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)據(jù)a,4,2,5,3的平均數(shù)為b,其中a,b是方程x2-4x+3=0的兩個根,則這組數(shù)據(jù)的標準差是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知10a,10b是方程x2-4x+1=0的兩個根,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知lga、lgb是方程2x2-4x+1=0的兩個根,則的值是(    )

A.4                     B.3                    C.2                     D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修1對數(shù)函數(shù)練習卷(解析版) 題型:選擇題

已知lga,lgb是方程2x-4x+1 = 0的兩個根,則(lg)的值是(  ).

(A).4               (B).3                 (C).2                     (D).1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省常州一中高三(下)期初數(shù)學試卷(解析版) 題型:解答題

已知數(shù)據(jù)a,4,2,5,3的平均數(shù)為b,其中a,b是方程x2-4x+3=0的兩個根,則這組數(shù)據(jù)的標準差是   

查看答案和解析>>

同步練習冊答案