【題目】在直角坐標平面內,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)).

1)分別求出曲線和直線的直角坐標方程;

2)若點在曲線上,且到直線的距離為1,求滿足這樣條件的點的個數(shù).

【答案】(Ⅰ);(Ⅱ)3個.

【解析】

試題分析:(1)由曲線的極坐標方程為,兩邊分別乘以,再根據(jù),即可將極坐標方程轉化為直角坐標方程.由直線的參數(shù)方程為為參數(shù)),消去參數(shù)t可得直角坐標系中的直線方程.

2)由圓心(2,0)到直線 的距離為1.所以恰為圓半徑的,所以圓上共有3個點到直線的距離為1.

1)由,故曲線的直角坐標方程為:,即

;由直線的參數(shù)方程消去參數(shù),

4

2)因為圓心到到直線的距離為恰為圓半徑的,所以圓上共有3個點到直線的距離為17

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求的值;

(2)設為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (是自然對數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中共有8個乒乓球,其中有5個白球,3個紅球,這些乒乓球除顏色外完全相同.從袋中隨機取出一球,如果取出紅球,則把它放回袋中;如果取出白球,則該白球不再放回,并且另補一個紅球放入袋中,重復上述過程次后,袋中紅球的個數(shù)記為.

(I)求隨機變量的概率分布及數(shù)學期望;

(Ⅱ)求隨機變量的數(shù)學期望關于的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天干地支紀年法,源于中國,中國自古便有十天干與十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推.排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推.已知2018年為戊戌年,那么到改革開放一百年,即2078年為__________年.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩臺機床生產(chǎn)同一型號零件.記生產(chǎn)的零件的尺寸為cm),相關行業(yè)質檢部門規(guī)定:若,則該零件為優(yōu)等品;若,則該零件為中等品;其余零件為次品.現(xiàn)分別從甲、乙機床生產(chǎn)的零件中各隨機抽取50件,經(jīng)質量檢測得到下表數(shù)據(jù):

尺寸







甲零件頻數(shù)

2

3

20

20

4

1

乙零件頻數(shù)

3

5

17

13

8

4

)設生產(chǎn)每件產(chǎn)品的利潤為:優(yōu)等品3元,中等品1元,次品虧本1.若將頻率視為概率,試根據(jù)樣本估計總體的思想,估算甲機床生產(chǎn)一件零件的利潤的數(shù)學期望;

)對于這兩臺機床生產(chǎn)的零件,在排除其它因素影響的情況下,試根據(jù)樣本估計總體的思想,估計約有多大的把握認為零件優(yōu)等與否和所用機床有關,并說明理由.

參考公式:.

參考數(shù)據(jù):


025

015

010

005

0025

0.010


1323

2072

2706

3841

5024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)R).

1)求函數(shù)R上的最小值;

2)若不等式上恒成立,求的取值范圍;

3)若方程上有四個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

同步練習冊答案