【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值,其中,求的最小值.

【答案】(1)答案見解析;(2) .

【解析】試題分析:(1)求出,分三種情況討論: 時(shí), 時(shí),結(jié)合判別式及求根公式,令,求得 的范圍,可得函數(shù)增區(qū)間, 求得 的范圍,可得函數(shù)的減區(qū)間;(2)根據(jù)韋達(dá)定理可得, , , ,令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性可得的最小值為,即的最小值為.

試題解析:(1)由題意得,其中,

,

①當(dāng)時(shí),令,得, ,

所以, 單調(diào)遞增;

②當(dāng)時(shí), , 單調(diào)遞增;

③當(dāng)時(shí),令,得 ,且

可知當(dāng)時(shí), ,

單調(diào)遞增;

當(dāng)時(shí),

單調(diào)遞減;

當(dāng)時(shí), ,

單調(diào)遞增;

綜上所述,當(dāng)時(shí), 單調(diào)遞增;

當(dāng), 單調(diào)遞增,

單調(diào)遞減;

(2)由(1)知,

由題意知的兩根,

,

可得,

,∴

,

則有

當(dāng)時(shí), , 上單調(diào)遞減,

的最小值為

,即的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線,傾斜角為,以為極點(diǎn), 軸在平面直角坐標(biāo)系中,直線,曲線為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求的極坐標(biāo)方程;

(2)若曲線的極坐標(biāo)方程為,且曲線分別交于點(diǎn)兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為. 

(1)當(dāng)時(shí),求曲線和曲線的交點(diǎn)的直角坐標(biāo);

(2)當(dāng)時(shí),設(shè) 分別是曲線與曲線上動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角梯形 , , 分別是邊、上的點(diǎn),沿折起并連接成如圖的多面體,折后

(Ⅰ)求證:

(Ⅱ)若折后直線與平面所成角的正弦值是,求證平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,其中,由中的元素構(gòu)成兩個(gè)相應(yīng)的集合:

,

其中是有序數(shù)對(duì),集合中的元素個(gè)數(shù)分別為

若對(duì)于任意的,總有,則稱集合具有性質(zhì)

)檢驗(yàn)集合是否具有性質(zhì)并對(duì)其中具有性質(zhì)的集合,寫出相應(yīng)的集合

)對(duì)任何具有性質(zhì)的集合,證明

)判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面, .

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊(cè)答案