【題目】已知D是直角ABC斜邊BC上一點,AC= DC,
(Ⅰ)若∠DAC=30°求角B的大。
(Ⅱ)若BD=2DC,且 AD=2 ,求DC的長.
【答案】解:(Ⅰ)在△ADC中,根據(jù)正弦定理,有
∵AC= DC,
∴sin∠ADC= sin∠DAC=
又∠ADC=∠B+∠BAD=∠B+60°>60°
∴∠ADC=120°
于是∠C=180°﹣120°﹣30°,
∴∠B=60°
(Ⅱ)∵BD=2DC,且 AD=2 ,
設(shè)DC=x,則BD=2x,BC= x,AC= x
于是sinB=
在△ABD中,由余弦定理得:AD2=AB2+BD2﹣2ABBD cos B,
即(2 )2=6x2+4x2﹣2x x2x× 2,
解得:x=2
故DC=2.
【解析】(1)由正弦定理得出角的關(guān)系,經(jīng)分析可得出角B的大。唬2)根據(jù)比例,設(shè)出相應(yīng)線段的長度,再由正余弦定理解出x,得到DC=2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1, .
(1)求證:PA⊥平面PBC;
(2)若點M在棱PB上,且PM:MB=3,求證CM∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,平面PAC⊥底面ABCD,BC=CD= AC=2,∠ACB=∠ACD= .
(1)證明:AP⊥BD;
(2)若AP= ,AP與BC所成角的余弦值為 ,求二面角A﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體ABCD中,M是棱AD的中點,O是點A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中的a2、a4032是函數(shù) 的兩個極值點,則log2(a2a2017a4032)=( 。
A.
B.4
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中.以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系已知曲線C:pcos2θ=2asinθ(a>0)過點P(﹣4,﹣2)的直線l的參數(shù)方程為 (t為參數(shù))直線l與曲線C分別交于點M,N.
(1)寫出C的直角坐標(biāo)方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點F是拋物線τ:x2=2py (p>0)的焦點,點A是拋物線上的定點,且 =(2,0),點B,C是拋物線上的動點,直線AB,AC斜率分別為k1 , k2 .
(I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點D是點B,C處切線的交點,記△BCD的面積為S,證明S為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為矩形,M是AD上一點.
(1)求證:AB⊥PM;
(2)若N是PB的中點,且AN∥平面PCM,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)證明:k∈R,直線y=g(x)都不是曲線y=f(x)的切線;
(2)若x∈[e,e2],使得f(x)≤g(x)+ 成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com