【題目】某大型超市抽查了100天該超市的日純利潤(rùn)數(shù)據(jù),并分成了以下幾組(單位:萬(wàn)元):,,,,,.統(tǒng)計(jì)結(jié)果如下表所示(統(tǒng)計(jì)表中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值):
組別 | ||||||
頻數(shù) | 5 | 20 | 30 | 30 | 10 | 5 |
(1)求這100天該大型超市日純利潤(rùn)的平均數(shù)及中位數(shù);
(2)該天型超市負(fù)責(zé)人決定利用分層抽樣的方法從前2組中隨機(jī)抽出5天數(shù)據(jù)分析日純利潤(rùn)較少的原因,并從這5天數(shù)據(jù)中再抽出其中2天數(shù)據(jù)進(jìn)行深入分析,求這2天的數(shù)據(jù)恰好來(lái)自不同組的概率;
(3)利用上述樣本分布估計(jì)總體分布,解決下面問(wèn)題:該大型超市總經(jīng)理根據(jù)每天的純利潤(rùn)給員工制定了兩種獎(jiǎng)勵(lì)方案:
方案一:記日純利潤(rùn)為萬(wàn)元,當(dāng)時(shí),獎(jiǎng)勵(lì)每位員工40元/天;當(dāng)時(shí),獎(jiǎng)勵(lì)每位員工80元/天;當(dāng)時(shí),獎(jiǎng)勵(lì)每位員工120元/天;
方案二:日純利潤(rùn)低于總體中位數(shù)時(shí)每名員工發(fā)放獎(jiǎng)金50元/天,日純利潤(rùn)不低于總體中位數(shù)時(shí)每名員工發(fā)放80元獎(jiǎng)金/天;
“小張恰好為該大型超市的一位員工,則從統(tǒng)計(jì)角度看,小張選擇哪種獎(jiǎng)勵(lì)方案更有利?
【答案】(1)平均數(shù)為6.85萬(wàn)元,中位數(shù)為萬(wàn)元;(2);(3)方案一
【解析】
(1)直接計(jì)算平均值和中位數(shù)得到答案.
(2)記來(lái)自于的1天為,來(lái)自于的4天分別為,,,,列出所有情況,計(jì)算滿足條件的情況,得到概率.
(3)根據(jù)計(jì)算兩種方案的獎(jiǎng)金的平均值,比較大小得到答案.
(1)這100天該大型超市日純利潤(rùn)的平均數(shù)為:
(萬(wàn)元).
前2組頻率之和為,前3組頻率之和為,
故中位數(shù)位于第3組.
設(shè)中位數(shù)為,則有,解得,
即這100天該大型超市日純利潤(rùn)的中位數(shù)為萬(wàn)元.
(2)由分層抽樣知識(shí)可知,所抽取的5天數(shù)據(jù)中,來(lái)自于,這2組的天數(shù)分別為1,4.記來(lái)自于的1天為,來(lái)自于的4天分別為,,,,
則從中抽取2天的數(shù)據(jù)的所有可能結(jié)果有:,,,,,,,,,,共10種,
其中這2天的數(shù)據(jù)來(lái)自不同組的有:,,,,共4種.
故所求的概率為.
(3)設(shè)選擇方案一時(shí)小張每天的獎(jiǎng)金為元,
則的可能取值為40,80,120,其對(duì)應(yīng)的概率分別為0.25,0.6,0.15,
所以獲得獎(jiǎng)金的平均數(shù)(元).
設(shè)選擇方案二時(shí)小張每天的獎(jiǎng)金為元,
則獲得獎(jiǎng)金的平均數(shù)(元).
因?yàn)?/span>,所以從統(tǒng)計(jì)角度看,小張選擇方案一更有利.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,左、右頂點(diǎn)分別為A,B,點(diǎn)M是橢圓C上異于A,B的一點(diǎn),直線AM與y軸交于點(diǎn)P.
(Ⅰ)若點(diǎn)P在橢圓C的內(nèi)部,求直線AM的斜率的取值范圍;
(Ⅱ)設(shè)橢圓C的右焦點(diǎn)為F,點(diǎn)Q在y軸上,且∠PFQ=90°,求證:AQ∥BM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體,過(guò)對(duì)角線作平面交棱于點(diǎn)E,交棱于點(diǎn)F,則:
①平面分正方體所得兩部分的體積相等;
②四邊形一定是平行四邊形;
③平面與平面不可能垂直;
④四邊形的面積有最大值.
其中所有正確結(jié)論的序號(hào)為( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心在l上.若圓C上存在點(diǎn)M,使MA=2MO,則圓心C的橫坐標(biāo)a的取值范圍是( )
A.B.[0,1]
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型超市抽查了100天該超市的日純利潤(rùn)數(shù)據(jù),并將日純利潤(rùn)數(shù)據(jù)分成以下幾組(單位:萬(wàn)元):,,,,,,統(tǒng)計(jì)結(jié)果如下表所示:
組別 | ||||||
頻數(shù) | 5 | 20 | 30 | 30 | 10 | 5 |
以上述樣本分布的頻率估計(jì)總體分布的概率,解決下列問(wèn)題:
(1)從該大型超市近幾年的銷(xiāo)售記錄中抽出5天,求其中日純利潤(rùn)在區(qū)間內(nèi)的天數(shù)不少于2的概率;
(2)該超市經(jīng)理由頻數(shù)分布表可以認(rèn)為,該大型超市每天的純利潤(rùn)服從正態(tài)分布,其中,近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值).
①試?yán)迷撜龖B(tài)分布,估計(jì)該大型超市1000天內(nèi)日純利潤(rùn)在區(qū)間內(nèi)的天數(shù)(精確到個(gè)位);
②該大型超市負(fù)責(zé)人根據(jù)每日的純利潤(rùn)給超市員工制定了兩種不同的獎(jiǎng)勵(lì)方案:
方案一:直接發(fā)放獎(jiǎng)金,日純利潤(rùn)低于時(shí)每名員工發(fā)放獎(jiǎng)金70元,日純利潤(rùn)不低于時(shí)每名員工發(fā)放獎(jiǎng)金90元;
方案二:利用抽獎(jiǎng)的方式獲得獎(jiǎng)金,其中日純利潤(rùn)不低于時(shí)每位員工均有兩次抽獎(jiǎng)機(jī)會(huì),日純利潤(rùn)低于時(shí)每位員工只有一次抽獎(jiǎng)機(jī)會(huì);每次抽獎(jiǎng)的獎(jiǎng)金及對(duì)應(yīng)的概率分別為
金額 | 50元 | 100元 |
概率 |
小張恰好為該大型超市的一名員工,則從數(shù)學(xué)期望的角度看,小張選擇哪種獎(jiǎng)勵(lì)方案更有利?
參考數(shù)據(jù):若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)為了打贏脫貧攻堅(jiān)戰(zhàn),決定盤(pán)活貧困村的各項(xiàng)經(jīng)濟(jì)發(fā)展要素,實(shí)施了產(chǎn)業(yè)、創(chuàng)業(yè)、就業(yè)“三業(yè)并舉”工程.在實(shí)施過(guò)程中,引導(dǎo)某貧困村農(nóng)戶因地制宜開(kāi)展種植某經(jīng)濟(jì)作物.該類(lèi)經(jīng)濟(jì)作物的質(zhì)量以其質(zhì)量指標(biāo)值來(lái)衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,其質(zhì)量指標(biāo)的等級(jí)劃分如下表1:
表1
質(zhì)量指標(biāo)值 | 產(chǎn)品等級(jí) |
優(yōu)秀品 | |
良好品 | |
合格品 | |
不合格品 |
為了解該類(lèi)經(jīng)濟(jì)作物在當(dāng)?shù)氐姆N植效益,當(dāng)?shù)匾N了甲、乙兩個(gè)品種.并隨機(jī)抽取了甲、乙兩個(gè)品種的各件產(chǎn)品,測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面產(chǎn)品質(zhì)量指標(biāo)值頻率分布直方圖(圖1和圖2).
(1)若將頻率視為概率,從乙品種產(chǎn)品中有放回地隨機(jī)抽取件,記“抽出乙品種產(chǎn)品中至少件良好品或以上”為事件,求事件發(fā)生的概率;(結(jié)果保留小數(shù)點(diǎn)后位)(參考數(shù)值:,)
(2)若甲、乙兩個(gè)品種的銷(xiāo)售利潤(rùn)率與質(zhì)量指標(biāo)值滿足表2
表2
質(zhì)量指標(biāo)值 | ||||
銷(xiāo)售利潤(rùn)率 |
其中,試分析,從長(zhǎng)期來(lái)看,種植甲、乙哪個(gè)品種的平均利潤(rùn)率較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長(zhǎng)度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com