(本題滿(mǎn)分12分)如圖,橢圓C方程為 (),點(diǎn)為橢圓C的左、右頂點(diǎn)。

(1)若橢圓C上的點(diǎn)到焦點(diǎn)的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線(xiàn)與(1)中所述橢圓C相交于A、B兩點(diǎn)(A、B不是左、右頂點(diǎn)),且滿(mǎn)足,求證:直線(xiàn)過(guò)定點(diǎn),并求出該點(diǎn)的坐標(biāo)。 

 

【答案】

(1)

(2)

【解析】

試題分析:解:(1) 由題意知    橢圓的標(biāo)準(zhǔn)方程為

(2)設(shè),由…….(1)

聯(lián)立方程

 帶入(1)式整理的

所以得,

當(dāng)時(shí),滿(mǎn)足。此時(shí),直線(xiàn)恒過(guò)點(diǎn)

當(dāng)時(shí),滿(mǎn)足。此時(shí),直線(xiàn)恒過(guò)點(diǎn)不符合題意,舍。

所以,直線(xiàn)恒過(guò)定點(diǎn)

考點(diǎn):橢圓的方程以及直線(xiàn)與橢圓的位置關(guān)系

點(diǎn)評(píng):解決該試題的關(guān)鍵是利用橢圓性質(zhì)來(lái)求解方程,同時(shí)能利用韋達(dá)定理和垂直關(guān)系得到結(jié)論,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點(diǎn).

(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;

(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)如圖,在長(zhǎng)方體中,已知上下兩底面為正方形,且邊長(zhǎng)均為1;側(cè)棱,為中點(diǎn),中點(diǎn),上一個(gè)動(dòng)點(diǎn).

(Ⅰ)確定點(diǎn)的位置,使得

(Ⅱ)當(dāng)時(shí),求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).

 ⑴求異面直線(xiàn)PD與AE所成角的大小;

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大。.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題

 

(本題滿(mǎn)分12分)

如圖3,在圓錐中,已知的直徑的中點(diǎn).

(I)證明:

(II)求直線(xiàn)和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題

(本題滿(mǎn)分12分)

如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。

   (1)求證:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案