【題目】已知關于的不等式 的解集為.
(1)若,求的取值范圍;
(2)若存在兩個不相等負實數(shù),使得,求實數(shù)的取值范圍;
(3)若恰有三個整數(shù)、、在集合中,求的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)解集,分為和進行討論,分別得到的范圍,得到答案;(2)根據(jù)解集,可得,根據(jù)為兩個不相等負實數(shù),得到,根據(jù)韋達定理,得到的不等式,解出的范圍,得到答案;(3)根據(jù)解集中恰有個整數(shù),得到,設并判斷出滿足題意,根據(jù)對稱性得到也滿足,則要求時,,從而得到關于的不等式,解出的范圍,得到答案.
(1)不等式,其解集
①當時,恒成立,符合題意;
②當時,則,即
解得
綜上所述:
(2)因為不等式的解集為,
且為兩個不相等負實數(shù),
可得,即
解得
綜上可得,.
(3)解集中恰有個整數(shù),可得
設,開口向下,對稱軸為,
可得,
可知解集中的三個整數(shù)一定有和,
根據(jù)二次函數(shù)的對稱性得到,還有一個整數(shù)一定為,
此時已滿足解集中恰有三個整數(shù),則要求
,即
解得
科目:高中數(shù)學 來源: 題型:
【題目】新高考最大的特點就是取消文理分科,除語文、數(shù)學、外語之外,從物理、化學、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全文(選擇政治、歷史、地理)的選擇是否與性別有關,從某學校高一年級的1000名學生中隨機抽取男生,女生各25人進行模擬選科.經(jīng)統(tǒng)計,選擇全文的人數(shù)比不選全文的人數(shù)少10人.
(1)估計在男生中,選擇全文的概率.
(2)請完成下面的列聯(lián)表;并估計有多大把握認為選擇全文與性別有關,并說明理由;
選擇全文 | 不選擇全文 | 合計 | |
男生 | 5 | ||
女生 | |||
合計 |
附:,其中.
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時,該模型收益的預報值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的上頂點為A,以A為圓心,橢圓的長半軸為半徑的圓與y軸的交點分別為、.
(1)求橢圓的方程;
(2)設不經(jīng)過點A的直線與橢圓交于P、Q兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線是以點為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運動”是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機用戶可以通過關注“微信運動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的PK或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機選取了50人(男、女各25人),并記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 0~3000 | 3001~6000 | 6001~9000 | 9001~12000 | >12000 |
男 | 1 | 1 | 3 | 15 | 5 |
女 | 0 | 4 | 11 | 8 | 2 |
若某人一天走路的步數(shù)超過9000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”。
(1)利用樣本估計總體的思想,估計小明的所有微信好友中每日走路步數(shù)超過12000步的概率;
(2)根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有99.5%的把握認為“評定類型”與“性別”有關?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com