9.已知等差數(shù)列{an}的前n項和為Sn,a2=-2,S4=-4,若Sn取得最小值,則n的值為( 。
A.n=2B.n=3C.n=2或n=3D.n=4

分析 利用等差數(shù)列的通項公式與求和公式可得an,令an≤0,解得n即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a2=-2,S4=-4,
∴a1+d=-2,4a1+$\frac{4×3}{2}$d=-4,
解得a1=-4,d=2.
∴an=-4+2(n-1)=2n-6,
令an≤0,解得n≤3.
∴若Sn取得最小值,則n=2或3.
故選:C.

點(diǎn)評 本題考查了等差數(shù)列的性質(zhì)與求和公式、單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果函數(shù)f(x)對其定義域內(nèi)的兩個實(shí)數(shù)x1、x2,都滿足不等式$f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$,則稱函數(shù)f(x)在其定義域內(nèi)具有性質(zhì)M.給出下列函數(shù):①$y=\sqrt{x}$;②y=x2;③y=2x;④y=log2x.其中具有性質(zhì)M的是( 。
A.①④B.②③C.③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)=(k+2)ax+2-b(a>0,且a≠1)是指數(shù)函數(shù)
(1)求k,b的值;
(2)求解不等式f(2x-7)>f(4x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=-x2+2x.
(1)求函數(shù)f(x)在R上的解析式;
(2)畫出函數(shù)f(x)的圖象;
(3)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f($\frac{x-1}{x+1}$)=-x-1.
(1)求f(x);
(2)求f(x)在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在銳角△ABC中,角A、B所對的邊長分別為a、b,若2asinB=$\sqrt{3}$b,則角A等于60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=\frac{|x|+a}(a<0,b>0)$的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.
下列命題正確的是③⑤.
①“囧函數(shù)”的值域為R;             
②“囧函數(shù)”在(0,+∞)上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于y軸對稱;      
④“囧函數(shù)”有兩個零點(diǎn);
⑤“囧函數(shù)”的圖象與直線y=kx+m(k≠0)至少有一個交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)y=xa的圖象過點(diǎn)$(\frac{1}{2},\frac{{\sqrt{2}}}{2})$,則loga2的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)求證:sinα•sinβ=$\frac{1}{2}$[cos(α-β)-cos(α+β)];
(2)在銳角△ABC中,∠A=60°,BC=2,求△ABC面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案