【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x2 , 若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個零點,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.
【答案】C
【解析】解:∵函數(shù)f(x)滿足f(x+1)=﹣f(x),故有f(x+2)=f(x),故f(x)是周期為2的周期函數(shù).再由f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x2 , 可得當x∈[﹣1,0]時,f(x)=x2 , 故當x∈[﹣1,1]時,f(x)=x2 , 當x∈[1,3]時,f(x)=(x﹣2)2 .
由于函數(shù)g(x)=f(x)﹣kx﹣k有4個零點,故函數(shù)y=f(x)的圖象與直線y=kx+k 有4個交點,如圖所示:
把點(3,1)代入y=kx+k,可得k= ,數(shù)形結合可得實數(shù)k的取值范圍是 (0, ],
故選C.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=f(x)的圖象是以原點為圓心、1為半徑的兩段圓弧,如圖所示.則不等式f(x)>f(-x)+x的解集為( )
A. ∪(0,1]
B. [-1,0)∪
C. ∪
D. ∪
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.( )
D.(﹣∞,﹣ ,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進行進價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關系如下圖所示,該網(wǎng)店與這種商品有關的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關系式;
(2)寫出利潤(元)與單價(元)之間的函數(shù)關系式;當該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名射擊運動員分別對一個目標射擊1次,甲射中的概率為,乙射中的概率為,求:
(1)2人中恰有1人射中目標的概率;
(2)2人至少有1人射中目標的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且tanC= ,c=﹣3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校高三數(shù)學備課組為了更好地制定復習計劃,開展了試卷講評后效果的調(diào)研,從上學期期末數(shù)學試題中選出一些學生易錯題,重新進行測試,并認為做這些題不出任何錯誤的同學為“過關”,出了錯誤的同學為“不過關”,現(xiàn)隨機抽查了年級50人,他們的測試成績的頻數(shù)分布如下表:
期末分數(shù)段 | ||||||
人數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
“過關”人數(shù) | 1 | 2 | 9 | 7 | 3 | 4 |
(1)由以上統(tǒng)計數(shù)據(jù)完成如下列聯(lián)表,并判斷是否有的把握認為期末數(shù)學成績不低于90分與測試“過關”有關?說明你的理由:
分數(shù)低于90分人數(shù) | 分數(shù)不低于90分人數(shù) | 合計 | |
“過關”人數(shù) | |||
“不過關”人數(shù) | |||
合計 |
(2)在期末分數(shù)段的5人中,從中隨機選3人,記抽取到過關測試“過關”的人數(shù)為,求的分布列及數(shù)學期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com