【題目】 如圖,△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)
(Ⅰ)證明:△ABE∽△ADC;
(Ⅱ)若△ABC的面積,求的大小.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ).
【解析】
(Ⅰ)先證明∠BAE=∠CAD,∠AEB=∠ACD,利用相似三角形的判定定理可得結(jié)論;(Ⅱ)利用三角形相似可得AB·AC=AD·AE,結(jié)合△ABC的面積,可得sin∠BAC=1,從而可得結(jié)果.
由已知條件,可得∠BAE=∠CAD.
因為∠AEB與∠ACB是同弧上的圓周角,
所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因?yàn)?/span>△ABE∽△ADC,所以,
即AB·AC=AD·AE.
又S=AB·AC·sin∠BAC,且S=AD·AE,
故AB·AC·sin∠BAC=AD·AE.
則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)命題的說(shuō)法正確的是( )
A. ,使得成立.
B. 命題:任意,都有,則:存在,使得.
C. 命題“若且,則且”的逆命題為真命題.
D. 若數(shù)列是等比數(shù)列,則是的必要不充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營(yíng)公司為了解某地區(qū)用戶對(duì)該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了100名用戶,得到用戶的滿意度評(píng)分(滿分10分),現(xiàn)將評(píng)分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評(píng)分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
頻數(shù) | 5 | 10 | a | 32 | 16 |
頻率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估計(jì)用戶的滿意度評(píng)分的平均數(shù);
(3)若從這100名用戶中隨機(jī)抽取25人,估計(jì)滿意度評(píng)分低于6分的人數(shù)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將分別沿折起,使兩點(diǎn)重合于,連接.
(1)求證:;
(2)點(diǎn)是上一點(diǎn),若平面,則為何值?并說(shuō)明理由.
(3)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計(jì)兩個(gè)分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問(wèn)是否有的把握認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.
甲 廠 | 乙 廠 | 合計(jì) | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
合計(jì) |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,
(Ⅰ)設(shè)分別為的中點(diǎn),求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在與時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對(duì),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)a<0時(shí),f(x)在上的值域?yàn)?/span>,求a,b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com