【題目】下列命題:①“”是“存在,使得成立”的充分不必要條件;②“”是“存在,使得成立”的必要條件;③“”是“不等式對一切恒成立”的充要條件. 其中所以真命題的序號是
A.③B.②③C.①②D.①③
【答案】B
【解析】
選項(xiàng)①當(dāng)時,必存在n∈N*,使得成立,故前者是后者的充分條件,
但存在n∈N*,使得成立時,a即為當(dāng)n∈N*,時的取值范圍,即,故“”應(yīng)是“存在n∈N*,使得成立”的充要條件,故①錯誤;
選項(xiàng)②當(dāng)存在n∈N*,使得成立時,a只需大于當(dāng)n∈N*,時的最小取值即可,故可得a>0,故“a>0”是“存在n∈N*,使得成立”的必要條件,故②正確;
選項(xiàng)③由①知,當(dāng)n∈N*時的取值范圍為,故當(dāng)時,必有“不等式對一切n∈N*恒成立”,而要使不等式對一切n∈N*恒成立”,只需a大于的最大值即可,即a故“”是“不等式對一切n∈N*恒成立”的充要條件,③正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若是的極大值點(diǎn),求的取值范圍;
(2)當(dāng),時,方程(其中)有唯一實(shí)數(shù)解,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD.
(2)若點(diǎn)M為線段PA的中點(diǎn),求直線PB與平面AMN所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+﹣1,a∈R.
(1)當(dāng)a>0時,若函數(shù)f(x)在區(qū)間[1,3]上的最小值為,求a的值;
(2)討論函數(shù)g(x)=f′(x)﹣零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),及圓.
(1)求過點(diǎn)的圓的切線方程;
(2)若過點(diǎn)的直線與圓相交,截得的弦長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的切直線MN于點(diǎn)P,射線PK從PN出發(fā)繞點(diǎn)P逆時針方向旋轉(zhuǎn)到PM,旋轉(zhuǎn)過程中,PK交于點(diǎn)Q,設(shè)為x,弓形PmQ的面積為,那么的圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)個正數(shù)依次圍成一個圓圈,其中是公差為的等差數(shù)列,而是公比為的等比數(shù)列.
(1)若,求數(shù)列的所有項(xiàng)的和;
(2)若,求的最大值;
(3)當(dāng)時是否存在正整數(shù),滿足?若存在,求出值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為4的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)判斷在線段上是否存在一點(diǎn),使平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.
(1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;
(2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;
(3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com